Introduction: The integration of vestibular, visual, and somatosensory cues allows the perception of space through the orientation of our body and surrounding objects with respect to gravity. The main goal of this study was to identify the cortical networks recruited during the representation of body midline and the representation of verticality. Methods: Thirty right-handed healthy participants were evaluated using fMRI. Brain networks activated during a subjective straight-ahead (SSA) task were compared to those recruited during a subjective vertical (SV) task. Results: Different patterns of cortical activation were observed, with differential increases in the angular gyrus and left cerebellum posterior lobe during the SSA task, in right rolandic operculum and cerebellum anterior lobe during the SV task. Discussion: The activation of these areas involved in visuo-spatial functions suggests that bodily processes of great complexity are engaged in body representation and vertical perception. Interestingly, the common brain networks involved in SSA and SV tasks were comprised of areas of vestibular projection that receive multisensory information (parieto-occipital areas) and the cerebellum, and reveal a predominance of the right cerebral and cerebellar hemispheres. The outcomes of this first fMRI study designed to unmask common and specific neural mechanisms at work in gravity- or body-referenced tasks pave a new way for the exploration of spatial cognitive impairment in patients with vestibular or cortical disorders.

1.
Vallar
G
,
Lobel
E
,
Galati
G
,
Berthoz
A
,
Pizzamiglio
L
,
Le Bihan
D
.
A fronto-parietal system for computing the egocentric spatial frame of reference in humans
.
Exp Brain Res
.
1999
;
124
(
3
):
281
6
. .
2.
Galati
G
,
Pelle
G
,
Berthoz
A
,
Committeri
G
.
Multiple reference frames used by the human brain for spatial perception and memory
.
Exp Brain Res
.
2010
;
206
(
2
):
109
20
. .
3.
Gentaz
E
,
Baud-Bovy
G
,
Luyat
M
.
The haptic perception of spatial orientations
.
Exp Brain Res
.
2008
;
187
(
3
):
331
48
Article number: 331. .
4.
Richard
C
,
Rousseaux
M
,
Saj
A
,
Honoré
J
.
Straight ahead in spatial neglect: evidence that space is shifted, not rotated
.
Neurology
.
2004
;
63
(
11
):
2136
8
. .
5.
Galati
G
,
Lobel
E
,
Vallar
G
,
Berthoz
A
,
Pizzamiglio
L
,
Le Bihan
D
.
The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study
.
Exp Brain Res
.
2000
;
133
(
2
):
156
64
. .
6.
Saj
A
,
Cojan
Y
,
Musel
B
,
Honoré
J
,
Borel
L
,
Vuilleumier
P
.
Functional neuro-anatomy of egocentric versus allocentric space representation
.
Neurophysiol Clin
.
2014
;
44
(
1
):
33
40
. .
7.
Barra
J
,
Oujamaa
L
,
Chauvineau
V
,
Rougier
P
,
Pérennou
D
.
Asymmetric standing posture after stroke is related to a biased egocentric coordinate system
.
Neurology
.
2009
;
72
(
18
):
1582
7
. .
8.
Rousseaux
M
,
Honoré
J
,
Vuilleumier
P
,
Saj
A
.
Neuroanatomy of space, body, and posture perception in patients with right hemisphere stroke
.
Neurology
.
2013
;
81
(
15
):
1291
7
. .
9.
Saj
A
,
Honoré
J
,
Bernard-Demanze
L
,
Devèze
A
,
Magnan
J
,
Borel
L
.
Where is straight ahead to a patient with unilateral vestibular loss
.
Cortex
.
2013
;
49
(
5
):
1219
28
. .
10.
Saj
A
,
Bachelard-Serra
M
,
Lavieille
JP
,
Honoré
J
,
Borel
L
.
Signs of spatial neglect in unilateral peripheral vestibulopathy
.
Eur J Neurol
.
2021
;
28
(
5
):
1779
83
. .
11.
Borel
L
,
Honoré
J
,
Bachelard-Serra
M
,
Lavieille
JP
,
Saj
A
.
Representation of body orientation in vestibular-defective patients before and after unilateral vestibular loss
.
Front Syst Neurosci
.
2021
;
15
:
733684
. .
12.
Lopez
C
,
Mercier
MR
,
Halje
P
,
Blanke
O
.
Spatiotemporal dynamics of visual vertical judgments: early and late brain mechanisms as revealed by high-density electrical neuroimaging
.
Neuroscience
.
2011
;
181
:
134
49
. .
13.
Saj
A
,
Borel
L
,
Honoré
J
.
Functional neuroanatomy of vertical visual perception in humans
.
Front Neurol
.
2019
;
10
:
142
. .
14.
Barra
J
,
Marquer
A
,
Joassin
R
,
Reymond
C
,
Metge
L
,
Chauvineau
V
, et al
.
Humans use internal models to construct and update a sense of verticality
.
Brain
.
2010
;
133
(
Pt 12
):
3552
63
. .
15.
Saj
A
,
Honoré
J
,
Bernati
T
,
Rousseaux
M
.
Influence of spatial neglect, hemianopia and hemispace on the subjective vertical
.
Eur Neurol
.
2012
;
68
(
4
):
240
6
. .
16.
Rousseaux
M
,
Braem
B
,
Honoré
J
,
Saj
A
.
An anatomical and psychophysical comparison of subjective verticals in patients with right brain damage
.
Cortex
.
2015
;
69
:
60
7
. .
17.
Dieterich
M
,
Brandt
T
.
Functional brain imaging of peripheral and central vestibular disorders
.
Brain
.
2008
;
131
(
Pt 10
):
2538
52
. .
18.
Vuilleumier
P
.
Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: progress and challenges
.
Ann N Y Acad Sci
.
2013
;
1296
:
50
74
. .
19.
Milano
NJ
,
Heilman
KM
.
Cerebellar allocentric and action-intentional spatial neglect
.
Cogn Behav Neurol
.
2014
;
27
(
3
):
166
72
. .
20.
Chaudhari
A
,
Pigott
K
,
Barrett
AM
.
Midline body actions and leftward spatial “aiming” in patients with spatial neglect
.
Front Hum Neurosci
.
2015
;
9
(
9
):
393
. .
21.
Marotta
A
,
Re
A
,
Zampini
M
,
Fiorio
M
.
Bodily self-perception during voluntary actions: the causal contribution of premotor cortex and cerebellum
.
Cortex
.
2021
;
142
:
1
14
. .
22.
Bottini
G
,
Karnath
HO
,
Vallar
G
,
Sterzi
R
,
Frith
CD
,
Frackowiak
RS
, et al
.
Cerebral representations for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration
.
Brain
.
2001
;
124
(
Pt 6
):
1182
96
. .
23.
Brandt
T
,
Dieterich
M
.
The vestibular cortex. Its locations, functions, and disorders
.
Ann N Y Acad Sci
.
1999
;
871
(
871
):
293
312
. .
24.
Baier
B
,
Cuvenhaus
HS
,
Müller
N
,
Birklein
F
,
Dieterich
M
.
The importance of the insular cortex for vestibular and spatial syndromes
.
Eur J Neurol
.
2021
;
28
(
5
):
1774
8
. .
25.
Dai
S
,
Lemaire
C
,
Piscicelli
C
,
Pérennou
D
.
Lateropulsion prevalence after stroke: a systematic review and meta-analysis
.
Neurology
.
2022
;
98
(
15
):
e1574
84
. .
26.
Rousseaux
M
,
Honoré
J
,
Saj
A
.
Body representations and brain damage
.
Neurophysiol Clin
.
2014
;
44
(
1
):
59
67
. .
27.
Bostan
AC
,
Strick
PL
.
The basal ganglia and the cerebellum: nodes in an integrated network
.
Nat Rev Neurosci
.
2018
;
19
(
6
):
338
50
. .
28.
Bense
S
,
Janusch
B
,
Vucurevic
G
,
Bauermann
T
,
Schlindwein
P
,
Brandt
T
, et al
.
Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation
.
Exp Brain Res
.
2006
;
174
(
2
):
312
23
. .
29.
Barmack
NH
.
Central vestibular system: vestibular nuclei and posterior cerebellum
.
Brain Res Bull
.
2003
;
60
(
5–6
):
511
41
. .
30.
Eickhoff
SB
,
Weiss
PH
,
Amunts
K
,
Fink
GR
,
Zilles
K
.
Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping
.
Hum Brain Mapp
.
2006
;
27
(
7
):
611
21
. .
31.
Frank
SM
,
Greenlee
MW
.
The parieto-insular vestibular cortex in humans: more than a single area
.
J Neurophysiol
.
2018
;
120
(
3
):
1438
50
. .
32.
Lopez
C
,
Blanke
O
.
The thalamocortical vestibular system in animals and humans
.
Brain Res Rev
.
2011
;
67
(
1–2
):
119
46
. .
33.
zu Eulenburg
P
,
Caspers
S
,
Roski
C
,
Eickhoff
SB
.
Meta-analytical definition and functional connectivity of the human vestibular cortex
.
Neuroimage
.
2012
;
60
(
1
):
162
9
. .
34.
Merfeld
DM
,
Zupan
L
,
Peterka
RJ
.
Humans use internal models to estimate gravity and linear acceleration
.
Nature
.
1999
;
398
(
6728
):
615
8
. .
35.
Shadmehr
R
,
Krakauer
JWA
.
A computational neuroanatomy for motor control
.
Exp Brain Res
.
2008
;
185
(
3
):
359
81
. .
36.
Cojan
Y
,
Saj
A
,
Vuilleumier
P
.
Brain substrates for distinct spatial processing components contributing to hemineglect in humans
.
Brain Sci
.
2021
;
11
(
12
):
1584
. .
37.
Péruch
P
,
Borel
L
,
Gaunet
F
,
Thinus-Blanc
G
,
Magnan
J
,
Lacour
M
.
Spatial performance of unilateral vestibular defective patients in nonvisual versus visual navigation
.
J Vestib Res
.
1999
;
9
(
1
):
37
47
. .
38.
Péruch
P
,
Borel
L
,
Magnan
J
,
Lacour
M
.
Direction and distance deficits in path integration after unilateral vestibular loss depend on task complexity
.
Brain Res Cogn Brain Res
.
2005
;
25
(
3
):
862
72
. .
39.
von Brevern
M
,
Lempert
T
,
Bronstein
AM
,
Kocen
R
.
Selective vestibular damage in neurosarcoidosis
.
Ann Neurol
.
1997
;
42
(
1
):
117
20
. .
You do not currently have access to this content.