Background: Recently, it has been shown that coronavirus disease 2019 (COVID-19), which has caused a pandemic since December 2019, can be accompanied by some neurological disorders. This study aimed to assess the prevalence of the most common neurological symptoms and comorbidities and systematically review the literature regarding the most prevalent neurological complications of COVID-19 infection. Methods: All relevant studies had been collected from PubMed, Scopus, Embase, and Web of Science databases. All extracted data were analyzed using Stata version 11.2. The I2 index was applied, and a random-effects model or a fixed-effects model was used for pooled estimation to assess the heterogeneity of studies. Furthermore, Egger and Beeg’s tests were used to evaluate the publication bias. Results: Fifty-seven studies (26 observational and 31 case reports) were included (including 6,597 COVID-19 patients). The most prevalent general symptoms were fever, cough, and dyspnea with 84.6% (95% CI: 75.3–92.1; I2 = 98.7%), 61.3% (95% CI: 55.3–67.0; I2 = 94.6%), and 34.2% (95% CI: 25.6–43.4; I2 = 97.7%), respectively. Neurological symptoms observed among COVID-19 patients were fatigue, gustatory dysfunction, anorexia, olfactory dysfunction, headache, dizziness, and nausea with 42.9% (95% CI: 36.7–49.3; I2 = 92.8%), 35.4% (95% CI: 11.2–64.4; I2 = 99.2%), 28.9% (95% CI: 19.9–38.8; I2 = 96.3%), 25.3% (95% CI: 1.6–63.4; I2 = 99.6%), 10.1% (95% CI: 2.7–21.0; I2 = 99.1%), 6.7% (95% CI: 3.7–10.5; I2 = 87.5%), and 5.9% (95% CI: 3.1–9.5; I2 = 94.5%). The most prevalent neurological comorbidity in COVID-19 was cerebrovascular disease with 4.3% (95% CI: 2.7–6.3; I2 = 78.7%). Conclusion: The most prevalent neurological manifestations of COVID-19 include fatigue, gustatory dysfunction, anorexia, olfactory dysfunction, headache, dizziness, and nausea. Cerebrovascular disorders can either act as a risk factor for poorer prognosis in COVID-19 patients or occur as a critical complication in these patients. Guillain-Barre syndrome, encephalitis, and meningitis have also been reported as complications of COVID-19.

1.
WHO. Coronavirus disease (COVID-19) Situation Report-138. 2020 Jun. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200606-covid-19-sitrep-138.pdf?sfvrsn=c8abfb17_4.
2.
Sun
P
,
Qie
S
,
Liu
Z
,
Ren
J
,
Li
K
,
Xi
J
.
Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis
.
J Med Virol
.
2020
;
92
(
6
):
612
7
.
3.
Morfopoulou
S
,
Brown
JR
,
Davies
EG
,
Anderson
G
,
Virasami
A
,
Qasim
W
,
.
Human coronavirus OC43 associated with fatal encephalitis
.
N Engl J Med
.
2016
;
375
(
5
):
497
8
.
4.
Turgay
C
,
Emine
T
,
Ozlem
K
,
Muhammet
SP
,
Haydar
AT
.
A rare cause of acute flaccid paralysis: human coronaviruses
.
J Pediatr Neurosci
.
2015
;
10
(
3
):
280
.
5.
Al-Gethamy
M
,
Corman
VM
,
Hussain
R
,
Al-Tawfiq
JA
,
Drosten
C
,
Memish
ZA
.
A case of long-term excretion and subclinical infection with middle east respiratory syndrome coronavirus in a healthcare worker
.
Clin Infect Dis
.
2015
;
60
(
6
):
973
4
.
6.
Duong
L
,
Xu
P
,
Liu
A
.
Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020
.
Brain Behav Immun
.
2020
;
87
:
33
.
7.
Ye
M
,
Ren
Y
,
Lv
T
.
Encephalitis as a clinical manifestation of COVID-19
.
Brain Behav Immun
.
2020
;
88
:
945
6
.
8.
Moriguchi
T
,
Harii
N
,
Goto
J
,
Harada
D
,
Sugawara
H
,
Takamino
J
,
.
A first case of meningitis/encephalitis associated with SARS-coronavirus-2
.
Int J Infect Dis
.
2020
;
94
:
55
8
.
9.
Sedaghat
Z
,
Karimi
N
.
Guillain Barre syndrome associated with COVID-19 infection: a case report
.
J Clin Neurosci
.
2020
;
76
:
233
5
.
10.
Zhao
H
,
Shen
D
,
Zhou
H
,
Liu
J
,
Chen
S
.
Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence
.
Lancet Neurol
.
2020
;
19
(
5
):
383
4
.
11.
Gutiérrez-Ortiz
C
,
Méndez-Guerrero
A
,
Rodrigo-Rey
S
,
Pedro-Murillo
ES
,
Bermejo-Guerrero
L
,
Gordo-Mañas
R
,
.
Miller Fisher syndrome and polyneuritis cranialis in COVID-19
.
Neurology
.
2020
;
95
(
5
):
e601
5
.
12.
Mao
L
,
Jin
H
,
Wang
M
,
Hu
Y
,
Chen
S
,
He
Q
,
.
Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China
.
JAMA Neurol
.
2020
;
77
(
6
):
683
90
.
13.
Wang
D
,
Hu
B
,
Hu
C
,
Zhu
F
,
Liu
X
,
Zhang
J
,
.
Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China
.
JAMA
.
2020
;
323
(
11
):
1061
9
.
14.
Giacomelli
A
,
Pezzati
L
,
Conti
F
,
Bernacchia
D
,
Siano
M
,
Oreni
L
,
.
Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study
.
Clin Infect Dis
.
2020
;
71
(
15
):
889
90
.
15.
Liu
K
,
Pan
M
,
Xiao
Z
,
Xu
X
.
Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019–2020
.
J Neurol Neurosurg Psychiatry
.
2020
;
91
(
6
):
669
70
.
16.
Das
G
,
Mukherjee
N
,
Ghosh
S
.
Neurological insights of COVID-19 pandemic
.
ACS Chem Neurosci
.
2020
;
11
(
9
):
1206
.
17.
Li
YC
,
Bai
WZ
,
Hashikawa
T
.
The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients
.
J Med Virol
.
2020
;
92
(
6
):
552
5
.
18.
Yashavantha Rao
H
,
Jayabaskaran
C
.
The emergence of a novel coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients
.
J Med Virol
.
2020
;
92
(
7
):
786
90
.
19.
Li
Z
,
Liu
T
,
Yang
N
,
Han
D
,
Mi
X
,
Li
Y
,
.
Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain
.
Front Med
.
2020
;
14
:
533
41
.
20.
Torabi
A
,
Mohammadbagheri
E
,
Dilmaghani
NA
,
Bayat
A-H
,
Fathi
M
,
Vakili
K
,
.
Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia
.
ACS Chem Neurosci
.
2020
;
11
(
13
):
1909
13
.
21.
Netland
J
,
Meyerholz
DK
,
Moore
S
,
Cassell
M
,
Perlman
S
.
Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2
.
J Virol
.
2008
;
82
(
15
):
7264
75
.
22.
Cashion
MF
,
Banks
WA
,
Bost
KL
,
Kastin
AJ
.
Transmission routes of HIV-1 gp120 from brain to lymphoid tissues
.
Brain Res
.
1999
;
822
(
1–2
):
26
33
.
23.
Bostanciklioğlu
M
.
SARS-CoV2 entry and spread in the lymphatic drainage system of the brain
.
Brain Behav Immun
.
2020
;
87
:
122
3
.
24.
Larson
AS
,
Savastano
L
,
Kadirvel
R
,
Kallmes
DF
,
Hassan
AE
,
Brinjikji
W
.
COVID-19 and the cerebrovascular-cardiovascular systems: what do we know so far
.
J Am Heart Assoc
.
2020
;
9
:
e016793
.
25.
Freeman
MF
,
Tukey
JW
.
Transformations related to the angular and the square root
.
Ann Math Statist
.
1950
;
21
(
4
):
607
11
.
26.
Wells
G
.
The newcastle-ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis
. Available from: http://www.ohri.ca/programs/clinical_epidemiology.oxford.htm.2004.
27.
Liberati
A
,
Altman
DG
,
Tetzlaff
J
,
Mulrow
C
,
Gøtzsche
PC
,
Ioannidis
JPA
,
.
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
.
PLoS Med
.
2009
;
6
(
10
):
e1000100
e34
.
28.
Ghebreyesus
TA
.
WHO director-general’s opening remarks at the media briefing on COVID-19-11 March 2020
.
Geneva, Switzerland
:
World Health Organization
;
2020
. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-atthe-media-briefing-on-covid-19-11-march-2020.
29.
Niazkar
M
,
Niazkar
HR
.
COVID-19 outbreak: application of multi-gene genetic programming to country-based prediction models
.
Electron J Gen Med
.
2020
;
17
(
5
):
em247
.
30.
Lauer
SA
,
Grantz
KH
,
Bi
Q
,
Jones
FK
,
Zheng
Q
,
Meredith
HR
,
.
The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application
.
Ann Intern Med
.
2020
;
172
(
9
):
577
82
.
31.
Wu
Y
,
Xu
X
,
Chen
Z
,
Duan
J
,
Hashimoto
K
,
Yang
L
,
.
Nervous system involvement after infection with COVID-19 and other coronaviruses
.
Brain Behav Immun
.
2020
;
87
:
18
22
.
32.
Grant
MC
,
Geoghegan
L
,
Arbyn
M
,
Mohammed
Z
,
McGuinness
L
,
Clarke
EL
,
,
The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries
.
PLoS One
.
2020 Jun 23
;
15
(
6
):
e0234765
.
33.
Helms
J
,
Kremer
S
,
Merdji
H
,
Clere-Jehl
R
,
Schenck
M
,
Kummerlen
C
,
.
Neurologic features in severe SARS-CoV-2 infection
.
N Engl J Med
.
2020
;
382
(
23
):
2268
70
.
34.
De Santis
G
.
SARS-CoV-2: a new virus but a familiar inflammation brain pattern
.
Brain Behav Immun
.
2020
;
87
:
95
6
.
35.
Murray
RS
,
Cai
GY
,
Hoel
K
,
Zhang
JY
,
Soike
KF
,
Cabirac
GF
.
Coronavirus infects and causes demyelination in primate central nervous system
.
Virology
.
1992
;
188
(
1
):
274
84
.
36.
Butler
N
,
Pewe
L
,
Trandem
K
,
Perlman
S
.
Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated
.
Virology
.
2006
;
347
(
2
):
410
21
.
37.
Baig
AM
,
Khaleeq
A
,
Ali
U
,
Syeda
H
.
Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms
.
ACS Chem Neurosci
.
2020
;
11
(
7
):
995
8
.
38.
Shigemura
N
,
Takai
S
,
Hirose
F
,
Yoshida
R
,
Sanematsu
K
,
Ninomiya
Y
.
Expression of renin-angiotensin system components in the taste organ of mice
.
Nutrients
.
2019
;
11
(
9
):
2251
.
39.
Bigiani
A
.
Gustatory dysfunctions in COVID-19 patients: possible involvement of taste renin-angiotensin system (RAS)
.
Eur Arch Otorhinolaryngol
.
2020
;
277
:
2395
.
40.
Kinnaird
E
,
Stewart
C
,
Tchanturia
K
.
Taste sensitivity in anorexia nervosa: a systematic review
.
Int J Eat Disord
.
2018
;
51
(
8
):
771
84
.
41.
DeSarbo
JR
,
DeSarbo
L
.
Anorexia nervosa and COVID-19
.
Curr Psychiatry
.
2020
;
19
(
8
):
23
8
.
42.
Qin
C
,
Zhou
L
,
Hu
Z
,
Zhang
S
,
Yang
S
,
Tao
Y
,
.
Dysregulation of immune response in patients with COVID-19 in Wuhan, China
.
Clin Infect Dis
.
2020
;
71
(
15
):
762
68
.
43.
Bolay
H
,
Gül
A
,
Baykan
B
,
COVID-19 is a real headache!
.
Headache J Head Face Pain
;
60
(
7
):
1415
21
.
44.
Kluger
BM
,
Krupp
LB
,
Enoka
RM
.
Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy
.
Neurology
.
2013
;
80
(
4
):
409
16
.
45.
Borges do Nascimento
IJ
,
Cacic
N
,
Abdulazeem
HM
,
von Groote
TC
,
Jayarajah
U
,
Weerasekara
I
,
.
Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis
.
J Clin Med
.
2020
;
9
(
4
):
941
.
46.
Williams
FMK
,
Muirhead
N
,
Pariante
C
.
Covid-19 and chronic fatigue
.
BMJ
.
2020
;
370
:
m2922
.
47.
Russell
A
,
Hepgul
N
,
Nikkheslat
N
,
Borsini
A
,
Zajkowska
Z
,
Moll
N
,
.
Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome
.
Psychoneuroendocrinology
.
2019
;
100
:
276
85
.
48.
Vaninov
N
.
In the eye of the COVID-19 cytokine storm
.
Nat Rev Immunol
.
2020
;
20
(
5
):
277
.
49.
Koskiniemi
M
,
Donner
M
,
Pettay
O
.
Clinical appearance and outcome in mumps encephalitis in children
.
Acta Paediatr Scand
.
1983
;
72
(
4
):
603
9
.
50.
Hamming
I
,
Timens
W
,
Bulthuis
MLC
,
Lely
AT
,
Navis
GJ
,
van Goor
H
.
Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
.
J Pathol
.
2004
;
203
(
2
):
631
7
.
51.
Li
Y
,
Li
M
,
Wang
M
,
Zhou
Y
,
Chang
J
,
Xian
Y
,
.
Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study
.
Stroke Vasc Neurol
.
2020
;
5
(
3
):
279
84
.
52.
Jasti
M
,
Nalleballe
K
,
Dandu
V
,
Onteddu
S
.
A review of pathophysiology and neuropsychiatric manifestations of COVID-19
.
J Neurol
.
2020
;
1
.
53.
Oxley
TJ
,
Mocco
J
,
Majidi
S
,
Kellner
CP
,
Shoirah
H
,
Singh
IP
,
.
Large-vessel stroke as a presenting feature of Covid-19 in the young
.
N Engl J Med
.
2020
;
382
(
20
):
e60
.
54.
Libbey
JE
,
Kennett
NJ
,
Wilcox
KS
,
White
HS
,
Fujinami
RS
.
Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection
.
J Virol
.
2011
;
85
(
14
):
6913
22
.
55.
Hosking
MP
,
Lane
TE
.
The role of chemokines during viral infection of the CNS
.
PLoS Pathog
.
2010
;
6
(
7
):
e1000937
.
56.
Fairweather
D
,
Frisancho-Kiss
S
,
Rose
NR
.
Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis
.
Rev Med Virol
.
2005
;
15
(
1
):
17
27
.
You do not currently have access to this content.