Background: Authors have been advocating the research ideology that a computer-aided diagnosis (CAD) system trained using lots of patient data and physiological signals and images based on adroit integration of advanced signal processing and artificial intelligence (AI)/machine learning techniques in an automated fashion can assist neurologists, neurosurgeons, radiologists, and other medical providers to make better clinical decisions. Summary: This paper presents a state-of-the-art review of research on automated diagnosis of 5 neurological disorders in the past 2 decades using AI techniques: epilepsy, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and ischemic brain stroke using physiological signals and images. Recent research articles on different feature extraction methods, dimensionality reduction techniques, feature selection, and classification techniques are reviewed. Key Message: CAD systems using AI and advanced signal processing techniques can assist clinicians in analyzing and interpreting physiological signals and images more effectively.

1.
World Health Organization. World Health Organization, 27 02 2017. [Accessed December 12, 2018]. Available from: https://www.who.int/mediacentre/news/releases/2007/pr04/e/.
2.
Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction.
Epilepsy Behav
. 2018;88:251–61.
3.
Bairy GM, Lih OS, Hagiwara Y, Subha DP, Faust O, Niranjan UCA, et al. Automated diagnosis of depression electroencephalograph signals using linear prediction -coding and higher order spectra features.
J Med Imaging Health Inform
. 2017;7(8):1857–62.
4.
Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Autism: cause factors, early diagnosis and therapies.
Rev Neurosci
. 2014;25(6):841–50.
5.
Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Automated diagnosis of autism: in search of a mathematical marker.
Rev Neurosci
. 2014;25(6):851–61.
6.
Sridhar C, Bhat S, Acharya UR, Adeli H, Bairy GM. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques.
Comput Biol Med
. 2017 Sep;88:93–9.
7.
Jahmunah V, Lih Oh S, Rajinikanth V, Ciaccio EJ, Hao Cheong K, Arunkumar N, et al. Automated detection of schizophrenia using nonlinear signal processing methods.
Artif Intell Med
. 2019 Sep;100:101698.
8.
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network.
Comput Methods Programs Biomed
. 2018 Jul;161:103–13.
9.
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.
Comput Biol Med
. 2018 Sep;100:270–8.
10.
Ortega-Zamorano F, Jerez JM, Gómez I, Franco L. Layer Multiplexing FPGA Implementation for Deep Back-Propagation Learning.
Integr Comput Aided Eng
. 2017;24(2):171–85.
11.
Ay B, Yildirim O, Talo M, Baloglu UB, Aydin G, Puthankattil SD, et al. Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals.
J Med Syst
. 2019 May;43(7):205.
12.
Yıldırım Ö, Baloglu UB, Acharya UR. A deep convolutional neural network model for automated identification of abnormal EEG signals.
Neural Comput Appl
. 2018:1–12.
13.
Khedher L, Illán IA, Górriz JM, Ramírez J, Brahim A, Meyer-Baese A. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support.
Int J Neural Syst
. 2017 May;27(3):1650050.
14.
López-Sanz D, Garcés P, Álvarez B, Delgado-Losada ML, López-Higes R, Maestú F. Network Disruption in the Preclinical Stages of Alzheimer’s Disease: From Subjective Cognitive Decline to Mild Cognitive Impairment.
Int J Neural Syst
. 2017 Dec;27(8):1750041.
15.
Fang C, Li C, Cabrerizo M, Barreto A, Andrian J, Rishe N, et al. Gaussian Discriminant Analysis-Based Dual High-Dimensional Decision Spaces for the Diagnosis of Mild Cognitive Impairment in Alzheimer’s Disease.
Int J Neural Syst
. 2018;28(8):1850017.
16.
Valenzuela O, Jiang X, Carrillo A, Rojas I. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer’s Disease and Mild Cognitive Impairment.
Int J Neural Syst
. 2018 Nov;28(9):1850022.
17.
Acharya UR, Hagiwara Y, Deshpande SN, Suren S, Wei Koh JE, Lih Oh S, et al. Characterization of focal EEG signals: a review.
Future Gener Comput Syst
. 2019;91:290–9.
18.
Budka H. Neuropathology of human immunodeficiency virus infection.
Brain Pathol
. 1991 Apr;1(3):163–75.
19.
Mammone N, Ieracitano C, Adeli H, Bramanti A, Morabito FC. Permutation Jaccard Distance-based Hierarchical Clustering to estimate EEG network density modifications in MCI subjects.
IEEE Trans Neural Netw Learn Syst
. 2018 Feb;29(10):5122–35.
20.
Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MK, Tanik UJ, et al. Automated Detection of Alzheimer’s Disease Using Brain MRI Images- A Study with Various Feature Extraction Techniques.
J Med Syst
. 2019 Aug;43(9):302.
21.
Saunders AM, Strittmatter WJ, Schmechel D, St. George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele e4 with late-onset familial and sporadic AD.
Neurology
. 1993;43:1467–72.
22.
Nalbantoglu J, Gilfix BM, Bertrand P, Robitaille Y, Gauthier S, Rosenblatt DS, et al. Predictive value of apolipoprotein E genotyping in Alzheimer’s disease: results of an autopsy series and an analysis of several combined studies.
Ann Neurol
. 1994 Dec;36(6):889–95.
23.
Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy. Defi nitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).
Epilepsia
. 2005 Apr;46(4):470–2.
24.
Guo L, Wang Z, Cabrerizo M, Adjouadi M. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.
Int J Neural Syst
. 2017 May;27(3):1750002.
25.
Wostyn S, Staljanssens W, De Taeye L, Strobbe G, Gadeyne S, Van Roost D, et al. EEG Derived Brain Activity Reflects Treatment Response from Vagus Nerve Stimulation in Patients with Epilepsy.
Int J Neural Syst
. 2017 Jun;27(4):1650048.
26.
Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L, Selway RP, Valentín A, Alarcón G. The role of thalamus versus cortex in epilepsy: evidence from human ictal centromedian recordings in patients assessed for deep brain stimulation.
Int J Neural Syst
. 2017 Nov;27(7):1750010.
27.
Kugiumtzis D, Koutlis C, Tsimpiris A, Kimiskidis VK. Dynamics of Epileptiform Discharges Induced by Transcranial Magnetic Stimulation in Genetic Generalized Epilepsy.
Int J Neural Syst
. 2017 Nov;27(7):1750037.
28.
Varatharajah Y, Iyer RK, Berry BM, Worrell GA, Brinkmann BH. Seizure Forecasting and the Preictal State in Canine Epilepsy.
Int J Neural Syst
. 2017 Feb;27(1):1650046.
29.
Shanir PP, Khan KA, Khan YU, Farooq O, Adeli H. Automatic Seizure Detection Based on Morphological Features Using One-Dimensional Local Binary Pattern on Long-Term EEG.
Clin EEG Neurosci
. 2018 Sep;49(5):351–62.
30.
Kotsopoulos IA, van Merode T, Kessels FG, de Krom MC, Knottnerus JA. Systematic review and meta-analysis of incidence studies of epilepsy and unprovoked seizures.
Epilepsia
. 2002 Nov;43(11):1402–9.
31.
Kotsopoulos I, de Krom M, Kessels F, Lodder J, Troost J, Twellaar M, et al. Incidence of epilepsy and predictive factors of epileptic and non-epileptic seizures.
Seizure
. 2005 Apr;14(3):175–82.
32.
De Cooman T, Varon C, Hunyadi B, Van Paesschen W, Lagae L, Van Huffel S. Online Automated Seizure Detection in Temporal Lobe Epilepsy Patients Using Single-lead ECG.
Int J Neural Syst
. 2017 Nov;27(7):1750022.
33.
Li R, Ji GJ, Yu Y, Yu Y, Ding MP, Tang YL, et al. Epileptic discharge related functional connectivity within and between networks in benign epilepsy with centrotemporal spikes.
Int J Neural Syst
. 2017 Nov;27(7):1750018.
34.
Jiang S, Luo C, Gong J, Peng R, Ma S, Tan S, et al. Aberrant thalamocortical connectivity in juvenile myoclonic epilepsy.
Int J Neural Syst
. 2018 Feb;28(1):1750034.
35.
Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform.
J Neurosci Methods
. 2003 Feb;123(1):69–87.
36.
Yuan Q, Zhou W, Xu F, Leng Y, Wei D. Epileptic EEG Identification via LBP Operators on Wavelet Coefficients.
Int J Neural Syst
. 2018 Oct;28(8):1850010.
37.
Li Y, Cui W, Luo M, Li K, Wang L. Epileptic Seizure Detection Based on Time-Frequency Images of EEG Signals Using Gaussian Mixture Model and Gray Level Co-Occurrence Matrix Features.
Int J Neural Syst
. 2018 Sep;28(7):1850003.
38.
Yuan S, Zhou W, Chen L. Epileptic Seizure Prediction Using Diffusion Distance and BLDA in Intracranial EEG.
Int J Neural Syst
. 2018;28(1):1750043.
39.
Schetinin V, Jakaite L, Krzanowski W. Bayesian Learning of Models for Estimating Uncertainty in Alert Systems: Application to Air traffic conflict avoidance.
Integr Comput Aided Eng
. 2018;25(3):1–17.
40.
Kobelt G, Pugliatti M. Cost of multiple sclerosis in Europe.
Eur J Neurol
. 2005 Jun;12(s1 Suppl 1):63–7.
41.
Jock Murray T, Allen C. Bowling, Chris Polman, Alan Thompson, John Noseworthy: Multiple sclerosis – The guide to treatment and management. London, 6th Ed. Multiple Sclerosis International Federation. 2006.
42.
Nutt JG, Wooten GF. Clinical practice. Diagnosis and initial management of Parkinson’s disease.
N Engl J Med
. 2005 Sep;353(10):1021–7.
43.
Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson’s disease: cause factors, measurable indicators, and early diagnosis.
Comput Biol Med
. 2018 Nov;102:234–41.
44.
Chaudhuri KR, Yates L, Martinez-Martin P. The non-motor symptom complex of Parkinson’s disease: a comprehensive assessment is essential.
Curr Neurol Neurosci Rep
. 2005 Jul;5(4):275–83.
45.
Marras C, Tanner CM. Epidemiology of Parkinson’s disease. In: Watts RL, Koller WC, editors.
Movement disorders, neurologic principles and practice
. 2nd ed. New York: McGraw Hill; 2004. pp. 177–96.
46.
Shinde S, Prasad S, Saboo Y, Kaushick R, Saini J, Pal PK, et al. Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI.
Neuroimage Clin
. 2019;22:101748.
47.
Zhang A, San-Segundo R, Panev S, Tabor G, Stebbins K, Whitford A, et al. Automated Tremor Detection in Parkinson’s Disease Using Accelerometer Signals.
IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)
, Washington, DC, USA, 2018.
48.
Gálvez G, Recuero M, Canuet L, Del-Pozo F. Short-term effects of Binaural Beats on EEG power, functional connectivity, cognition, gait and anxiety in Parkinson’s Disease.
Int J Neural Syst
. 2018 Jun;28(5):1750055.
49.
Hatano S. Experience from a multicentre stroke register: a preliminary report.
Bull World Health Organ
. 1976;54(5):541–53.
50.
Kelly DF, Becker DP. Advances in management of neurosurgical trauma: USA and -Canada.
World J Surg
. 2001 Sep;25(9):1179–85.
51.
Fakhry SM, Trask AL, Waller MA, Watts DD; IRTC Neurotrauma Task Force. Management of brain-injured patients by an evidence-based medicine protocol improves outcomes and decreases hospital charges.
J Trauma
. 2004 Mar;56(3):492–9.
52.
Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy.
Pain
. 1979 Jun;6(3):249.
53.
http://epileptologiebonn.de/cms/front_content.php?idcat=0&idart=0&client=1&lang=3&error=1.
56.
Arne Jensen and Anders la Cour-Harbo. Ripples in mathematics: the discrete wavelet transform. Springer Science & Business Media; 2001.
57.
Abbasi H, Bennet L, Gunn AJ, Unsworth CP. Robust Wavelet Stabilized ‘Footprints of Uncertainty’ for Fuzzy System Classifiers to Automatically Detect Sharp Waves in the EEG after Hypoxia Ischemia.
Int J Neural Syst
. 2017 May;27(3):1650051.
58.
Dai H, Cao Z. A wavelet support vector machine-based neural network meta model for structural reliability assessment.
Comput Aided Civ Infrastruct Eng
. 2017;32(4):344–57.
59.
Candes EJ, Donoho DL.
Curvelets: A surprisingly effective non adaptive representation for objects with edges. Technical report
. DTIC Document; 2000.
60.
Shao Y, Celenk M. Higher-order spectra (HOS) invariants for shape recognition.
Pattern Recognit
. 2001;34(11):2097–113.
61.
Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order statistics/spectra in biomedical signals—a review.
Med Eng Phys
. 2010 Sep;32(7):679–89.
62.
Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al. Adaptive histogram equalization and its variations.
Comput Vis Graph Image Process
. 1987;39(3):355–68.
63.
Malladi R, Sethian JA, Vemuri B. Shape modeling with front propagation: A level set approach.
IEEE Trans Pattern Anal Mach Intell
. 1995;17(2):158–75.
64.
Robert M. Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein: textural features for image classification. Systems.
IEEE Transactions on Man and Cybernetics.
1973;6:610–21.
65.
Renyi A. On measures of entropy and information, in:
Proceedings of the Fourth Berkeley symposium on mathematical statistics and probability
. 1961; 1: 547–561.
66.
Shannon CE. A mathematical theory of communication.
The Bell System Technical Journal J.
1948;27(3):379–423.
67.
Kapur JN. Information of order αand type β.
Proc Indiana Acad Sci
. 1968;68(2):65–75.
68.
Ghosh M, Chakraborty C, Ray AK. Yager’s measure based fuzzy divergence for microscopic color image segmentation. in:
Indian Conference on Medical Informatics and Telemedicine
. Kharagpur, 2013;13–16.
69.
Chen W, Wang Z, Xie H, Yu W. Characterization of surface EMG signal based on fuzzy entropy.
IEEE Trans Neural Syst Rehabil Eng
. 2007 Jun;15(2):266–72.
70.
Yin PY. Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization.
Signal Processing
. 2002;82(7):993–1006.
71.
Sezgin N, Emin Tagluk M. Energy based feature extraction for classification of sleep apnea syndrome.
Comput Biol Med
. 2009 Nov;39(11):1043–50.
72.
Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schürmann M, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals.
J Neurosci Methods
. 2001 Jan;105(1):65–75.
73.
Rényi A. On measures of entropy and information. In:
Proceedings of the fourth Berkeley symposium on mathematical statistics and probability
, 1961;547–561.
74.
Chen J, Li G. Tsallis wavelet entropy and its application in power signal analysis.
Entropy (Basel)
. 2014;16(6):3009–25.
75.
Hu MK. Visual pattern recognition by moment invariants.
IRE Trans Inf Theory
. 1962;8(2):179–87.
76.
Khotanzad A, Hong YH. Invariant image recognition by zernike moments.
IEEE Trans Pattern Anal Mach Intell
. 1990;12(5):489–97.
77.
Nixon M, Nixon MS, Aguado AS.
Feature extraction & image processing for computer vision
. Academic Press; 2012.
78.
Duda RO, Hart PE, Stork DG.
Pattern classification
. 2nd ed. California, USA: Wiley-Interscience; 2000.
79.
Hyvärinen A, Oja E. Independent component analysis: algorithms and applications.
Neural Netw
. 2000 May-Jun;13(4-5):411–30.
80.
Scholkopf B, Smola A, Muller KR. Nonlinear component analysis as a kernel eigenvalue problem.
Neural Comput
. 1998;10(5):1299–319.
81.
Gelman A. Analysis of variance –why it is more important than ever.
Ann Stat
. 2005;33(1):1–33.
82.
T-test. Student’s t-tests. Information. [date accessed on 04.07.17]. Available from: http://www.physics.csbsju.edu/stats/t-test.html.
83.
Dash M, Liu H. Handling large unsupervised data via dimensionality reduction.
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
. 1999.
84.
Abe N, Kudo M. Entropy criterion for classifier-independent feature selection. Knowledge-based intelligent information and engineering systems.
Lect Notes Comput Sci
. 2005;3684:689–95.
85.
Lopes N. Comparing machine learning algorithms with the Wilcoxon Signed Rank Test. Information. [date accessed on 04.07.18]. Available from: http://www.uc.pt/fctuc/dei/statisticalHypothesis/noel.
86.
Hwang T, Sun CH, Yun T, Yi GS. FiGS: a filter-based gene selection workbench for microarray data.
BMC Bioinformatics
. 2010 Jan;11:50.
87.
Natarajan S, Lipsitz SR, Fitzmaurice GM, Sinha D, Ibrahim JG, Haas J, et al. An extension of the Wilcoxon Rank-Sum test for complex sample survey data.
J R Stat Soc Ser C Appl Stat
. 2012 Aug;61(4):653–64.
88.
Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types.
Nat Biotechnol
. 2014 Jul;32(7):644–52.
89.
Kailath T. The divergence and Bhattacharyya distance measures in signal selection.
IEEE Trans Commun Technol
. 1967;15(1):52–60.
90.
Obuchowski NA. Receiver operating characteristic curves and their use in radiology.
Radiology
. 2003 Oct;229(1):3–8.
91.
Mitchell M. An Introduction to Genetic Algorithms. USA: MIT Press. Cambridge. 1998.
92.
Kennedy J, Eberhart R: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 1995.
93.
Shi Y, Eberhart R. A modified particle swarm optimizer. In:
Proceedings of the IEEE World Congress on Computational Intelligence
. Anchorage; 1998.
94.
Dorigo M, Birattari M, Stutzle T. Ant colony optimization.
IEEE Comput Intell Mag
. 2006;1(4):28–39.
95.
Nemati S, Basiri ME, Ghasem-Aghaee N, Aghdam MH. A novel ACO–GA hybrid algorithm for feature selection in protein function prediction.
Expert Syst Appl
. 2009;36(10):12086–94.
96.
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Trans Pattern Anal Mach Intell
. 2005 Aug;27(8):1226–38.
97.
Specht DF. Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification.
IEEE Trans Neural Netw
. 1990;1(1):111–21.
98.
Kecman V.
Learning and Soft Computing
. Cambridge (MA): MIT Press; 2001.
99.
Yager RR. An extension of the naive bayesian classifier.
Inf Sci
. 2006;176(5):577–88.
100.
Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks: the combination of knowledge and statistical data.
Mach Learn
. 1995;20(3):197–243.
101.
Larose DT. Discovering Knowledge in Data: An Introduction to Data Mining. Wiley-Interscience; 2004.
102.
Cover TM. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition.
IEEE Trans Electron Comput
. 1965;14(3):326–34.
103.
Amit Y, Geman D. Shape quantization and recognition with randomized trees.
Neural Comput
. 1997;9(7):1545–88.
104.
Berge A, Solberg AH. Structured Gaussian components for hyperspectral image classification.
IEEE Trans Geosci Remote Sens
. 2006;44(11):3386–96.
105.
Hirschauer TJ, Adeli H, Buford JA. Computer-aided diagnosis of Parkinson’s disease using an enhanced probabilistic neural network.
J Med Syst
. 2015 Nov;39(11):179.
106.
Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
Comput Biol Med
. 2018 Mar;94:19–26.
107.
Yamamoto D, Arimura H, Kakeda S, Magome T, Yamashita Y, Toyofuku F, et al. Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: false positive reduction scheme consisted of rule-based, level set method, and support vector machine.
Comput Med Imaging Graph
. 2010 Jul;34(5):404–13.
108.
Zacharaki EI, Kanterakis S, Bryan RN, Davatzikos C. Measuring brain lesion progression with a supervised tissue classification system.
Proc Int Conf Med Image Comput Comput Assist Interv
. 2008;11:620–27.
109.
Raghavendra U, Shyamasunder Bhat N, Gudigar A, Acharya UR. Automated system for the detection of thoracolumbar fractures using a CNN architecture.
Future Gener Comput Syst
. 2018;85:184–9.
110.
Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images.
Inf Sci
. 2018;441:41–9.
111.
Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals.
Comput Biol Med
. 2019 Aug;113:103387.
112.
Tan JH, Bhandary SV, Sivaprasad S, Hagiwara Y, Bagchi A, Raghavendra U. Age-related Macular Degeneration detection using deep convolutional neural network.
Future Gener Comput Syst
. 2018;87:127–35.
113.
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al. A deep convolutional neural network model to classify heartbeats.
Comput Biol Med
. 2017 Oct;89:389–96.
114.
Ker J, Wang L, Rao J, Lim T. Deep Learning Applications in Medical Image Analysis.
IEEE Access
. 2017;6:9375–89.
115.
Oh SL, Ng EY, Tan RS, Acharya UR. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
Comput Biol Med
. 2018 Nov;102:278–87.
116.
Yıldırım Ö, Pławiak P, Tan RS, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
Comput Biol Med
. 2018 Nov;102:411–20.
117.
Koziarski M, Cyganek B. Image Recognition with Deep Neural Networks in Presence of Noise – Dealing with and Taking Advantage of Distortions.
Integr Comput Aided Eng
. 2017;24(4):337–49.
118.
Wang P, Bai X. Regional Parallel Structure Based CNN for Thermal Infrared Face Identification.
Integr Comput Aided Eng
. 2018;25(3):247–60.
119.
Chen L, Ye F, Ruan Y, Fan H, Chen Q. An algorithm for highway vehicle detection based on convolutional neural network.
EURASIP J Image Video Process
. 2018;2018(1):109.
120.
Zhang A, Wang KC, Li B, Yang E, Dai X, Peng Y, et al. Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network.
Comput Aided Civ Infrastruct Eng
. 2017;32(10):805–19.
121.
Lin YZ, Nie ZH, Ma HW. Structural Damage Detection with Automatic Feature-extraction through Deep Learning.
Comput Aided Civ Infrastruct Eng
. 2017;32(12):1025–46.
122.
Gao Y, Mosalam KM. Deep Transfer Learning for Image-based Structural Damage Recognition.
Comput Aided Civ Infrastruct Eng
. 2018;33(9):748–68.
123.
Molina-Cabello MA, Luque-Baena RM, López-Rubio E, Thurnhofer-Hemsi K. Vehicle Type Detection by Ensembles of Convolutional Neural Networks Operating on Super-resolved Images.
Integr Comput Aided Eng
. 2018;25(4):321–33.
124.
Nabian MA, Meidani H. Deep Learning for Accelerated Reliability Analysis of Transportation Networks.
Comput Aided Civ Infrastruct Eng
. 2018;33(6):459–80.
125.
Hashemi H, Abdelghany K. End-to-end deep learning methodology for real-time traffic network management.
Comput Aided Civ Infrastruct Eng
. 2018;33(10):849–63.
126.
Rafiei MH, Khushefati WH, Demirboga R, Adeli H. Supervised Deep Restricted Boltzmann Machine for Estimation of Concrete Compressive Strength.
ACI Mater J
. 2017;114(2):237–44.
127.
Torres JF, Galicia A, Troncoso A, Martínez-Álvarez F. A scalable approach based on deep learning for big data time series forecasting.
Integr Comput Aided Eng
. 2018;25(4):335–48.
128.
Li W, Li M, Zhou H, Chen G, Jin J, Duan F. A Dual Stimuli Approach Combined with Convolutional Neural Network to Improve Information Transfer Rate of Event-Related Potential-Based Brain-Computer Interface.
Int J Neural Syst
. 2018 Dec;28(10):1850034.
129.
Cheng D, Liu M. Classification of AD by Cascaded Convolutional Neural Networks Using PET Images. Springer International Publishing AG 2017. Wang Q, et al. (eds). MLMI 2017. LNCS 10541. 2017. pp. 106–113.
130.
Cullen NC, Avants BB. Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. Brain Morphometry.
Neuromethods
. 2018;136:13–34.
131.
Islam J, Zhang Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks.
Brain Inform
. 2018 May;5(2):2.
132.
Hsu WY. A hybrid approach for brain image registration with local constraints.
Integr Comput Aided Eng
. 2017;24(1):73–85.
133.
Lozano A, Soto-Sánchez C, Garrigós J, Martínez JJ, Ferrández JM, Fernández E. A 3D convolutional neural network to model retinal ganglion cell’s responses to light patterns in mice.
Int J Neural Syst
. 2018 Dec;28(10):1850043.
134.
Antoniades A, Spyrou L, Took CC, Sanei S. Deep learning for epileptic intracranial EEG data. Italy: IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP); 2016.
135.
Johansen AR, Jin J, Maszczyk T, Dauwels J, Cash SS, Westover MB. Epileptiform spike detection via convolutional neural networks. China:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
; 2016.
136.
Yuan Y, Xun G, Jia K, Zhang A. A Multi-view Deep Learning Method for Epileptic Seizure Detection using Short-time Fourier Transform. Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics - ACM-BCB; 2017.
137.
Ullah I, Hussain M, Qazi EH, Aboalsamh H. An automated system for epilepsy detection using EEG brain signals based on deep learning approach.
Expert Syst Appl
. 2018;107:61–71.
138.
Martinez-Murcia FJ, Górriz JM, Ramírez J, Ortiz A. Convolutional Neural Networks for Neuroimaging in Parkinson’s Disease: Is Preprocessing Needed?
Int J Neural Syst
. 2018 Dec;28(10):1850035.
139.
Tjepkema-Cloostermans MC, de Carvalho RC, van Putten MJ. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings.
Clin Neurophysiol
. 2018 Oct;129(10):2191–6.
140.
Tagaris A, Kollias D, Stafylopatis A. Assessment of Parkinson’s Disease Based on Deep Neural Networks.
Commun Comput Inf Sci
. 2017;744:391–403.
141.
Liu M, Cheng D, Yan W; Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images.
Front Neuroinform
. 2018 Jun;12:35.
142.
Ahmadlou M, Adeli H, Adeli A. New diagnostic EEG markers of the Alzheimer’s disease using visibility graph.
J Neural Transm (Vienna)
. 2010 Sep;117(9):1099–109.
143.
Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease.
Alzheimer Dis Assoc Disord
. 2011 Jan-Mar;25(1):85–92.
144.
Sankari Z, Adeli H. Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence.
J Neurosci Methods
. 2011 Apr;197(1):165–70.
145.
Sankari Z, Adeli H, Adeli A. Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease.
Clin Neurophysiol
. 2011 May;122(5):897–906.
146.
Sankari Z, Adeli H, Adeli A. Wavelet coherence model for diagnosis of Alzheimer disease.
Clin EEG Neurosci
. 2012 Oct;43(4):268–78.
147.
Amezquita-Sanchez JP, Adeli A, Adeli H. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG).
Behav Brain Res
. 2016 May;305:174–80.
148.
Amezquita-Sanchez JP, Mammone N, Morabito FC, Marino S, Adeli H. A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals.
J Neurosci Methods
. 2019 Jul;322:88–95.
149.
Acharya UR, Chua KC, Lim TC, Dorithy JS, Suri JS. Suri: automatic identification of epileptic EEG signals using nonlinear parameters.
J Mech Med Biol
. 2009;9(4):539–53.
150.
Acharya UR, Sree SV, Suri JS. Automatic detection of epileptic EEG signals using higher order cumulant features.
Int J Neural Syst
. 2011 Oct;21(5):403–14.
151.
Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PC. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals.
Int J Neural Syst
. 2011 Jun;21(3):199–211.
152.
Acharya UR, Vinitha Sree S, Alvin PC, Yanti R, Suri JS. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals.
Int J Neural Syst
. 2012;22(2):1250002.
153.
Acharya UR, Molinari F, Vinitha Sree S, Chattopadhyay S, Kwan-Hoong N, Suri JS. Automated diagnosis of epileptic EEG using entropies.
Biomed Signal Process Control
. 2012;7(4):401–8.
154.
Acharya UR, Vinitha Sree S, Suri JS. Use of principal component analysis for automatic classification of epileptic EEG activities.
Expert Syst Appl
. 2012;39(10):9072–8.
155.
Acharya UR, Yanti R, Swapna G, Sree VS, Martis RJ, Suri JS. Automated diagnosis of epileptic electroencephalogram using independent component analysis and -discrete wavelet transform for different electroencephalogram durations.
Proc Inst Mech Eng H
. 2013 Mar;227(3):234–44.
156.
Aslan K, Bozdemir H, Sahin C, Oğulata SN, Erol R. A radial basis function neural network model for classification of epilepsy using EEG signals.
J Med Syst
. 2008 Oct;32(5):403–8.
157.
Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order spectra to identify epileptic EEG.
J Med Syst
. 2011 Dec;35(6):1563–71.
158.
Faust O, Acharya UR, Min LC, Sputh BH. Automatic identification of epileptic and background EEG signals using frequency domain parameters.
Int J Neural Syst
. 2010 Apr;20(2):159–76.
159.
Ghosh-Dastidar S, Adeli H, Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection.
IEEE Trans Biomed Eng
. 2007 Sep;54(9):1545–51.
160.
Ghosh-Dastidar S, Adeli H, Dadmehr N. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection.
IEEE Trans Biomed Eng
. 2008 Feb;55(2 Pt 1):512–8.
161.
Ghosh-Dastidar S, Adeli H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection.
Neural Netw
. 2009 Dec;22(10):1419–31.
162.
Guler NF, Ubey ED, Guler I. Recurrent neural network employing Lyapunov exponents for EEG signals classification.
Expert Syst Appl
. 2005;29(3):506–14.
163.
Guo L, Rivero D, Seoane JA, Pazos A. Classification of EEG signals using relative wavelet energy and artificial neural networks. In:
Conf Proc of the First ACM/SIGEVO Summit on Genetic and, Evolutionary Computation
. 2009. pp. 177–84.
164.
Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks.
J Neurosci Methods
. 2010 Oct;193(1):156–63.
165.
Guo L, Rivero D, Dorado J, Rabuñal JR, Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks.
J Neurosci Methods
. 2010 Aug;191(1):101–9.
166.
Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A. Automatic feature extraction using genetic programming: an application to epileptic EEG classification.
Expert Syst Appl
. 2011;38(8):10425–36.
167.
Iscan Z, Dokur Z, Demiralp T. Classification of electroencephalogram signals with combined time and frequency features.
Expert Syst Appl
. 2011;38(8):10499–505.
168.
Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG.
Comput Methods Programs Biomed
. 2005 Dec;80(3):187–94.
169.
Lima CA, Coelho AL, Eisencraft M. Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study.
Comput Biol Med
. 2010 Aug;40(8):705–14.
170.
Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK, et al. Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals.
Int J Neural Syst
. 2012 Dec;22(6):1250027.
171.
Nigam VP, Graupe D. A neural-network-based detection of epilepsy.
Neurol Res
. 2004 Jan;26(1):55–60.
172.
Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model.
Expert Syst Appl
. 2011;38(10):13475–81.
173.
Polat K, Gunes S. Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform.
Appl Math Comput
. 2007;187(2):1017–26.
174.
Polat K, Gunes S. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals.
Expert Syst Appl
. 2008;34(3):2039–48.
175.
Polat K, Gunes S. A novel data reduction method: distance based data reduction and its application to classification of epileptiform EEG signals.
Appl Math Comput
. 2008;200(1):10–27.
176.
Sadati N, Mohseni HR, Magshoudi A. Epileptic seizure detection using neural fuzzy networks. In: Proceedings of the IEEE International Conference on Fuzzy Systems. 2006. pp. 596–600.
177.
Srinivasan V, Eswaran C, Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features.
J Med Syst
. 2005 Dec;29(6):647–60.
178.
Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks.
IEEE Trans Inf Technol Biomed
. 2007 May;11(3):288–95.
179.
Subasi A. EEG Signal classification using wavelet feature extraction and a mixture of expert model.
Expert Syst Appl
. 2007;32(4):1084–93.
180.
Subasi A, Gursoy MI. EEG Signal classification using PCA, ICA, LDA and support vector machine.
Expert Syst Appl
. 2010;37(12):8659–66.
181.
Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks.
Comput Intell Neurosci
. 2007;2007:80510.
182.
Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal using machine learning techniques.
Australas Phys Eng Sci Med
. 2018 Mar;41(1):81–94.
183.
Ubeyli ED. Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals.
Expert Syst Appl
. 2010;37(1):233–9.
184.
Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection.
Expert Syst Appl
. 2011;38(11):14314–20.
185.
Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S. A novel robust diagnostic model to detect seizures in lectroencephalography.
Expert Syst Appl
. 2016;56:116–30.
186.
Peker M, Sen B, Delen D. A novel method for automated diagnosis of epilepsy using complex-valued classifiers.
IEEE J Biomed Health Inform
. 2016 Jan;20(1):108–18.
187.
Sharma M, Pachori RB. A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension.
J Mech Med Biol
. 2017;17(07):1740003.
188.
Patidar S, Panigrahi T. Detection of epileptic seizure using Kraskov entropy applied on tunable-q wavelet transform of EEG signals.
Biomed Signal Process Control
. 2017;34:74–80.
189.
Gandhi T, Panigrahi BK, Anand S. A comparative study of wavelet families for EEG signal classification.
Neurocomputing
. 2011;74(17):3051–7.
190.
Chen G. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features.
Expert Syst Appl
. 2014;41(5):2391–4.
191.
Swami P, Godiyal AK, Santhosh J, Panigrahi BK, Bhatia M, Anand S. Robust expert system design for automated detection of epileptic seizures using SVM classifier. In:
Proceedings of IEEE International Conference on Parallel, Distributed and Grid Computing
; 2014. pp. 219–22.
192.
Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions.
Comput Methods Programs Biomed
. 2014 Feb;113(2):494–502.
193.
Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions.
Expert Syst Appl
. 2015;42(3):1106–17.
194.
Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR. Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals.
Appl Sci (Basel)
. 2017;7(4):385.
195.
Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya UR. A novel approach for automated detection of focal EEG signals using empirical wavelet transform.
Neural Comput Appl
. 2018;29(8):47–57.
196.
Bhati D, Sharma M, Pachori RB, Gadre VM. Time-frequency localized threeband biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification.
Digit Signal Process
. 2017;62:259–73.
197.
Sharma M, Dhere A, Pachori RB, Acharya UR. An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks.
Knowl Base Syst
. 2017;118:217–27.
198.
Kaya Y, Uyar M, Tekin R, Yıldırım S. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals.
Appl Math Comput
. 2014;243:209–19.
199.
Zhu G, Li Y, Wen PP. Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm.
Comput Methods Programs Biomed
. 2014 Jul;115(2):64–75.
200.
Samiee K, Kovács P, Gabbouj M. Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform.
IEEE Trans Biomed Eng
. 2015 Feb;62(2):541–52.
201.
Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K. Emd-based temporal and spectral features for the classification of EEG signals using supervised learning.
IEEE Trans Neural Syst Rehabil Eng
. 2016 Jan;24(1):28–35.
202.
Diykh M, Li Y, Wen P. Classify epileptic eeg signals using weighted complex networks based community structure detection.
Expert Syst Appl
. 2017;90:87–100.
203.
Li M, Chen W, Zhang T. Application of MODWT and log-normal distribution model for automatic epilepsy identification.
Biocybern Biomed Eng
. 2017;37(4):679–89.
204.
Oh SL, Vicnesh J, Edward JC, Yuvaraj R, Acharya UR. Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals.
Appl Sci (Basel)
. 2019;9(14):2870.
205.
Al Ghayab HR, Li Y, Abdulla S, Diykh M, Wan X. Classification of epileptic EEG signals based on simple random sampling and sequential feature selection.
Brain Inform
. 2016 Jun;3(2):85–91.
206.
Sharma M, Bhuraneb AA, AcharyaUR. MMSFL-OWFB: A novel class of orthogonal wavelet filters for epileptic seizure detection.
Knowl Base Syst
. 2018;160:265–77.
207.
Tiwari AK, Pachori RB, Kanhangad V, Panigrahi BK, Panigrahi B. Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals.
IEEE J Biomed Health Inform
. 2017 Jul;21(4):888–96.
208.
Bajaj V, Pachori RB. Classification of seizure and non-seizure EEG signals using empirical mode decomposition.
IEEE Trans Inf Technol Biomed
. 2012 Nov;16(6):1135–42.
209.
Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines.
Expert Syst Appl
. 2012;39(1):202–9.
210.
Xie S, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis.
Med Biol Eng Comput
. 2013 Feb;51(1-2):49–60.
211.
Mursalin M, Zhang Y, Chen Y, Chawla NV. Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier.
Neurocomputing
. 2017;241:204–14.
212.
Upadhyay R, Padhy P, Kankar P. A comparative study of feature ranking techniques for epileptic seizure detection using wavelet transform.
Comput Electr Eng
. 2016;53:163–76.
213.
Kabir E, Siuly, Zhang Y. Epileptic seizure detection from EEG signals using logistic model trees.
Brain Inform
. 2016 Jun;3(2):93–100.
214.
Murugavel AS, Ramakrishnan S. Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification.
Med Biol Eng Comput
. 2016 Jan;54(1):149–61.
215.
Pippa E, Zacharaki EI, Mporas I, Tsirka V, Richardson MP, Koutroumanidis M, et al. Improving classification of epileptic and non-epileptic EEG events by feature selection.
Neurocomputing
. 2016;171:576–85.
216.
Kumar Y, Dewal M, Anand R. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network.
Signal Image Video Process
. 2014;8(7):1323–34.
217.
Naser A, Tantawi M, Shedeed H, Tolba M. Detecting Epileptic Seizures Using Abe Entropy,
Line Length and SVM Classifier. International Conference on Advanced Machine Learning Technologies and Applications
. 2019; 169–178.
218.
Tzimourta K, Tzallas A, Giannakeas N, Astrakas L, Angelidis L, Tsipouras D, et al. A robust methodology for classification of epileptic seizures in EEG signals. Health Technol. 2019;9(2):135–42.
219.
Lahmiri S, Shmuel A. Accurate Classification of Seizure and Seizure-Free Intervals of Intracranial EEG Signals From Epileptic Patients.
IEEE Trans Instrum Meas
. 2019;68(3):791–6.
220.
Raghu S, Sriraam N, Temel Y, Rao SV, Hegde AS, Kubben PL. Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier.
Comput Biol Med
. 2019 Jul;110:127–43.
221.
Wang X, Gong G, Li N. Automated recognition of epileptic EEG states using a combination of symlet wavelet processing, gradient boosting machine, and grid search optimizer.
Sensors
. 2019;19(2):219.
222.
Bose R, Pratiher S, Chatterjee S. Detection of epileptic seizure employing a novel set of features extracted from multifractal spectrum of electroencephalogram signals.
IET Signal Process
. 2019;13(2):157–64.
223.
Dalal M, Tanveer M, Pachori RB.
Machine Intelligence and Signal Analysis
. Springer Singapore; 2019.
224.
Sriraam N, Tamanna K, Narayan L, Khanum M, Raghu S, Hegde AS, et al. Multichannel EEG based inter-ictal seizures detection using Teager energy with backpropagation neural network classifier.
Australas Phys Eng Sci Med
. 2018 Dec;41(4):1047–55.
225.
Shaikh M, Farooq O, Chandel G. Lecture Notes in Electrical Engineering 509 Advances in System Optimization and Control; 2017.
226.
Osman AH, Alzahrani AA. New Approach for Automated Epileptic Disease Diagnosis Using an Integrated Self-Organization Map and Radial Basis Function Neural Network Algorithm.
IEEE Access
. 2019;7(7):4741–7.
227.
Sudalaimani C, Sivakumaran N, Elizabeth TT, Rominus VS. Automated detection of the preseizure state in EEG signal using neural networks.
Biocybern Biomed Eng
. 2019;39(1):160–75.
228.
Raghu S, Sriraam N. Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms.
Expert Syst Appl
. 2018;113:18–32.
229.
De Cooman T, Varon C, Van de Vel A, Jansen K, Ceulemans B, Lagae L, et al. Adaptive nocturnal seizure detection using heart rate and low-complexity novelty detection.
Seizure
. 2018 Jul;59:48–53.
230.
Li M, Chen W, Zhang T. A novel seizure diagnostic model based on kernel density estimation and least squares support vector ma.chine.
Biomed Signal Process Control
. 2018;41:233–41.
231.
Cruz NE, Solarte J, Varghas A.
Automated Epileptic Seizure Detection System Based on a Wearable Prototype and Cloud Computing to Assist People with Epilepsy. Applied Computer Sciences in Engineering
. Springer; 2018. pp. 204–13.
232.
Kocadagli O, Langari R. Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations.
Expert Syst Appl
. 2017;88:419–34.
233.
Zhang T, Chen W, Li M. Fuzzy distribution entropy and its application in automated seizure detection technique.
Biomed Signal Process Control
. 2018;39:360–77.
234.
Feng B, Zhao J, Fu W. Automated Classification of Epileptic EEG Signals Based on Multi-Feature Extraction. Beijing: IEEE 9th International Conference on Software Engineering and Service Science (ICSESS); 2018. pp. 382–6.
235.
Tanveer M, Pachori R, Angami N. Entropy based features in FAWT framework for automated detection of epileptic seizure EEG signals. IEEE Symp Ser Comput Intell; 2018. pp. 1946–52.
236.
Choudhury NR, Roy SS, Pal A, Chatterjee S, Bose R. Epileptic Seizure Detection Employing Cross-Hyperbolic Stockwell Transform. Kolkata:
Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)
; 2018. pp. 70–4.
237.
Torse D, Desai V, Khanai R. Classification of EEG Signals in Seizure Detection System Using Ellipse Area Features and Support Vector Machine. Proceedings of the 2nd International Conference on Data Engineering and Communication Technology ICDECT. 2017.
238.
Tomanik G, Betting L, Luiz A. Campanharo: Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks. Gran Canaria: Advances in Computational Intelligence, Proceedings of 15th International Work-Conference on Artificial Neural Networks, IWANN 2019; 2019. pp. 152–61.
239.
Wani S, Sabut S, Nalbalwar S. Detection of Epileptic Seizure Using Wavelet Transform and Neural Network Classifier.
Proceedings of ICCASP
; 2018.
240.
Qi Y, Wang Y, Zhang J, Zhu J, Zheng X. Robust deep network with maximum correntropy criterion for seizure detection.
BioMed Res Int
. 2014;2014:703816.
241.
Lin Q, Ye S, Huang X, Li S, Zhang M, Xue Y, et al. Classification of Epileptic EEG Signals with Stacked Sparse Autoencoder Based on Deep Learning. In: Huang DS, Han K, Hussain A (eds). Intelligent Computing Methodologies. ICIC 2016. Lecture Notes in Computer Science, Springer, Cham; 2016. vol 9773, pp. 802–10.
242.
Gogna A, Majumdar A, Ward R. Semi-supervised Stacked Label Consistent Autoencoder for Reconstruction and Analysis of Biomedical Signals.
IEEE Trans Biomed Eng
. 2017 Sep;64(9):2196–205.
243.
Hussein R, Palangi H, Ward RK, Wang ZJ. Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals.
Clin Neurophysiol
. 2019 Jan;130(1):25–37.
244.
Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. In
Proceedings of MLHC
, 2016. pp. 178–90).
245.
Emami A, Kunii N, Matsuo T, Shinozaki T, Kawai K, Takahashi H. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images.
Neuroimage Clin
. 2019;22:101684.
246.
Jang HJ, Cho KO. Dual deep neural network-based classifiers to detect experimental seizures.
Korean J Physiol Pharmacol
. 2019 Mar;23(2):131–9.
247.
Zuo R, Wei J, Li X, Li C, Zhao C, Ren Z, et al. Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network.
Front Comput Neurosci
. 2019 Feb;13:6.
248.
Wei X, Zhou L, Chen Z, Zhang L, Zhou Y. Automatic seizure detection using three-dimensional CNN based on multi-channel EEG.
BMC Med Inform Decis Mak
. 2018 Dec;18(5 Suppl 5):111.
249.
Achilles F, Tombari F, Belagiannis V, Loesch A, Noachtar S, Navab N. Convolutional neural networks for real-time epileptic seizure detection.
Comput Methods Biomech Biomed Eng Imaging Vis
. 2016;1163:264–9.
250.
Yuvaraj R, Thomas J, Kluge T, Dauwels J. A deep Learning Scheme for Automatic Seizure Detection from Long-Term Scalp EEG. 52nd Asilomar Conf. Signals, Syst. Comput; 2018. pp. 368–72.
251.
Hügle M, Heller S, Watter M, Blum M, Manzouri F, Dümpelmann M, et al. Early Seizure Detection with an Energy-Efficient Convolutional Neural Network on an Implantable Microcontroller. IEEE; 2018.
252.
Thomas J, Comoretto L, Jin J, Dauwels J, Cash S, Westover M. EEG Classification Via Convolutional Neural Network-Based Interictal Epileptiform Event Detection. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2018. pp. 3148–51.
253.
Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, et al. Detection of emotions in Parkinson’s disease using higher oder spectral features from brain’s electrical activity. Biomed.
Signal Process Contr
. 2014;14:108–16.
254.
Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al. Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson’s disease.
Int J Psychophysiol
. 2014 Dec;94(3):482–95.
255.
Yuvaraj R, Murugappan M, Acharya UR, Adeli H, Ibrahim NM, Mesquita E. Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia.
Behav Brain Res
. 2016 Feb;298 Pt B:248–60.
256.
Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L. An analytical method for diseases prediction using machine learning techniques.
Comput Chem Eng
. 2017;106:212–23.
257.
Tucker CS, Behoora I, Nembhard HB, Lewis M, Sterling NW, Huang X. Machine learning classification of medication adherence in patients with movement disorders using non-wearable sensors.
Comput Biol Med
. 2015 Nov;66:120–34.
258.
Prashantha R., Sumantra Dutta Roy: Early Detection of Parkinson's Disease through Patient Questionnaire and Predictive Modelling. Int J Med Inform. 2018;119:75–87.
259.
Ali H. Al-Fatlawi, Mohammed H. Jabardi, Sai Ho Ling: Efficient Diagnosis System for Parkinson’s Disease Using Deep Belief Network. Canada: In 2016 IEEE Congress on Evolutionary Computation (CEC); 2016.
260.
Caliskan A, Badem H, Baştürk A, Yüksel ME. Diagnosis of The Parkinson Disease By Using Deep Neural Network Classifier.
In Iu-JEEE
. 2017;17(2):3311–8.
261.
Grover S, Bhartia S, Akshama AY, Seeja KR. Predicting Severity Of Parkinson’s Disease Using Deep Learning.
Procedia Comput Sci
. 2018;132:1788–94.
262.
Oliveira FP, Castelo-Branco M. Computer-aided diagnosis of Parkinson’s disease based on [(123)I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines.
J Neural Eng
. 2015 Apr;12(2):026008.
263.
Banerjee M, Okun MS, Vaillancourt DE, Vemuri BC. A method for automated classification of Parkinson’s disease diagnosis using an ensemble average propagator template brain map estimated from diffusion MRI.
PLoS One
. 2016 Jun;11(6):e0155764.
264.
Cigdem O, Beheshti I, Demirel H. Effects of different covariates and contrasts on classification of Parkinson’s disease using structural MRI.
Comput Biol Med
. 2018 Aug;99:173–81.
265.
Segovia F, Illán IA, Górriz JM, Ramírez J, Rominger A, Levin J. Distinguishing Parkinson’s disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks.
Front Comput Neurosci
. 2015 Nov;9(137):137.
266.
Ahmadlou M, Adeli H. Enhanced probabilistic neural network with local decision circles: a robust classifier.
Integr Comput Aided Eng
. 2010;17(3):197–210.
267.
Choi H, Ha S, Im HJ, Paek SH, Lee DS. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging.
Neuroimage Clin
. 2017 Sep;16:586–94.
268.
Sivaranjini S, Sujatha CM. Deep learning based diagnosis of Parkinsons disease using convolutional neural network.
Multimed Tools Appl
. 2019:1–13.
269.
Han CX, Wang J, Yi GS, Che YQ. Investigation of EEG abnormalities in the early stage of Parkinson’s disease.
Cogn Neurodyn
. 2013 Aug;7(4):351–9.
270.
Yuvaraj R, Acharya UR, Hagiwara Y. A novel Parkinson’s disease diagnosis index using higher-order spectra features in EEG signals.
Neural Comput Appl
. 2018;30(4):1225–35.
271.
Hariharan M, Polat K, Sindhu R. A new hybrid intelligent system for accurate detection of Parkinson’s disease.
Comput Methods Programs Biomed
. 2014 Mar;113(3):904–13.
272.
Zhang YN. Can a Smartphone Diagnose Parkinson Disease? A Deep Neural Network Method and Telediagnosis System Implementation.
Parkinsons Dis
. 2017;2017:6209703.
273.
Hlavnička J, Čmejla R, Tykalová T, Šonka K, Růžička E, Rusz J. Automated analysis of connected speech reveals early biomarkers of Parkinson’s disease in patients with rapid eye movement sleep behaviour disorder.
Sci Rep
. 2017 Feb;7(1):12.
274.
Joshi D, Khajuria A, Joshi P. An automatic non-invasive method for Parkinson’s disease classification.
Comput Methods Programs Biomed
. 2017 Jul;145:135–45.
275.
Ornelas-Vences C, Sanchez-Fernandez LP, Sanchez-Perez LA, Garza-Rodriguez A, Villegas-Bastida A. Fuzzy inference model evaluating turn for Parkinson’s disease patients.
Comput Biol Med
. 2017 Oct;89:379–88.
276.
Samà A, Pérez-López C, Rodríguez-Martín D, Català A, Moreno-Aróstegui JM, Cabestany J, et al. Estimating bradykinesia severity in Parkinson’s disease by analysing gait through a waist-worn sensor.
Comput Biol Med
. 2017 May;84:114–23.
277.
Oung QW, Muthusamy H, Basah SN, Lee H, Vijean V. Empirical wavelet transform based features for classification of Parkinson’s disease severity.
J Med Syst
. 2017 Dec;42(2):29.
278.
Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease.
IEEE Trans Biomed Eng
. 2009 Apr;56(4):1015–22.
279.
Shahbaba B, Neal R. Nonlinear models using Dirichlet process mixtures.
J Mach Learn Res
. 2009;10:1829–50.
280.
Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease.
Expert Syst Appl
. 2010;37(2):1568–72.
281.
Sakar CO, Kursun O. Telediagnosis of Parkinson’s disease using measurements of dysphonia.
J Med Syst
. 2010 Aug;34(4):591–9.
282.
Psorakis I, Damoulas T, Girolami MA. Multiclass relevance vector machines: sparsity and accuracy.
IEEE Trans Neural Netw
. 2010 Oct;21(10):1588–98.
283.
Guo PF, Bhattacharya P, Kharma N. Advances in detecting Parkinson’s disease. In: Zhang D, Sonka M, (eds). Berlin: Medical biometrics, Lecture Notes in Computer Science; 2010. pp. 306–14.
284.
Ozcift A, Gulten A. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.
Comput Methods Programs Biomed
. 2011 Dec;104(3):443–51.
285.
Li DC, Liu CW, Hu SC. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets.
Artif Intell Med
. 2011 May;52(1):45–52.
286.
Luukka P. Feature selection using fuzzy entropy measures with similarity classifier.
Expert Syst Appl
. 2011;38(4):4600–7.
287.
Spadoto AA, Guido RC, Carnevali FL, Pagnin AF, Falcao AX, Papa JP. Improving Parkinson’s disease identification through evolutionary-based feature selection. In:
Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (EMBC-11)
, Boston; 2011. pp. 7857–60.
288.
Astrom F, Koker R. A parallel neural network approach to prediction of Parkinson’s Disease.
Expert Syst Appl
. 2011;38(10):12470–4.
289.
Ozcift A. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease.
J Med Syst
. 2012 Aug;36(4):2141–7.
290.
Polat K. Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering.
Int J Syst Sci
. 2012;43(4):597–609.
291.
Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease.
IEEE Trans Biomed Eng
. 2012 May;59(5):1264–71.
292.
Daliri MR. Chi square distance kernel of the gaits for the diagnosis of Parkinson’s disease.
Biomed Signal Process Control
. 2013;8(1):66–70.
293.
Chen HL, Huang CC, Yu XG, Xuc X, Sund X, Wang G, et al. An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach.
Expert Syst Appl
. 2013;40(1):263–71.
294.
Zuo WL, Wang ZY, Liu T, Chen HL. Effective detection of Parkinson’s disease using an adaptive fuzzy K-nearest neighbour approach.
Biomed Signal Process Control
. 2013;8(4):364–73.
295.
Ma C, Ouyang J, Chen HL, Zhao XH. An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach.
Comput Math Methods Med
. 2014;2014:985789.
296.
Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease.
Artif Intell Med
. 2016 Feb;67:39–46.
297.
Connolly AT, Kaemmerer WF, Dani S, Stanslaski SR, Panken E, Johnson MD, et al. Guiding deep brain stimulation contact selection using local field potentials sensed by a chronically implanted device in Parkinson's disease patients. Montpellier: 7th international conference on neural engineering; 2015. pp. 840–3.
298.
Wahid F, Begg RK, Hass CJ, Halgamuge S, Ackland DC. Classification of Parkinson’s disease gait using spatial-temporal gait features.
IEEE J Biomed Health Inform
. 2015 Nov;19(6):1794–802.
299.
Smith SL, Lones MA, Bedder M, Alty JE, Cosgrove J, Maguire RJ, et al. Computational approaches for understanding the diagnosis and treatment of Parkinson’s disease.
IET Syst Biol
. 2015 Dec;9(6):226–33.
300.
Shamir RR, Dolber T, Noecker AM, Walter BL, McIntyre CC. Machine learning approach to optimizing combined stimulation and medication therapies for Parkinson’s disease.
Brain Stimul
. 2015 Nov-Dec;8(6):1025–32.
301.
Procházka A, Vysata O, Valis M, Tupa O, Schätz M, Marík V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect.
Digit Signal Process
. 2015;47:169–77.
302.
Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L, Farahmand M. A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques.
Biocybern Biomed Eng
. 2018;38(1):1–15.
303.
Kim HB, Lee WW, Kim A, Lee HJ, Park HY, Jeon HS, et al. Wrist sensor-based tremor severity quantification in Parkinson’s disease using convolutional neural network.
Comput Biol Med
. 2018 Apr;95:140–6.
304.
Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, et al. A Deep Learning Approach for Parkinson’s Disease Diagnosis from EEG Signals.
Neural Comput Appl
. 2018:1–7.
305.
Al-nuaimi AH, Jammeh E, Sun L, Ifeachor E. Tsallis Entropy as a Biomarker for Detection of AD.
Conf Proc IEEE Eng Med Biol Soc
. 2015;2015:4166–9.
306.
Silveira M, Marques J. Boosting Alzheimer Disease Diagnosis using PET images. Turkey: International Conference on Pattern Recognition; 2010.
307.
Mahanand BS, Suresh S, Sundararajan N, Aswatha Kumar M. Alzheimer’s disease detection using a Self-adaptive Resource Allocation Network classifier. San Jose: The 2011 International Joint Conference on Neural Networks; 2011. pp. 1930–4.
308.
Mahmood R, Ghimire B. Automatic detection and classification of Alzheimer’s Disease from MRI scans using principal component analysis and artificial neural networks. Bucharest: 20th International Conference on Systems, Signals and Image Processing (IWSSIP); 2013. pp. 133–7.
309.
Ding Y. Cong Zhang, Tian Lan, Zhiguang Qin, Xinjie Zhang and Wei Wang: Classification of Alzheimer's disease based on the combination of morphometric feature and texture feature. Washington: IEEE International Conference on Bioinformatics and Biomedicine; 2015. pp. 409–412.
310.
Herrera LJ, Rojas I, Pomares H, Guillén A, Valenzuela O, Baños O. Classification of MRI Images for Alzheimer’s Disease Detection. Alexandria:
International Conference on Social Computing
; 2013. pp. 846–51.
311.
Sweety ME, Jiji GW. Detection of Alzheimer disease in brain images using PSO and Decision Tree Approach. Ramanathapuram:
IEEE International Conference on Advanced Communications, Control and Computing Technologies
; 2014. pp. 1305–9.
312.
Saraswathi S, Mahanand BS, Kloczkowski A, Suresh S, Sundararajan N. Detection of onset of Alzheimer’s disease from MRI images using a GA-ELM-PSO classifier. Singapore:
Fourth International Workshop on Computational Intelligence in Medical Imaging
; 2013. pp. 42–48.
313.
Mahanand BS, Suresh S, Sundararajan N, Kumar MA. ICGA-ELM classifier for Alzheimer’s disease detection. Kharagpur:
Indian Conference on Medical Informatics and Telemedicine (ICMIT)
; 2013. pp. 48–52.
314.
Mahanand BS, Babu GS, Suresh S, Sundararajan N. Identification of imaging biomarkers responsible for Alzheimer’s Disease using a McRBFN classifier.
International Conference on Cognitive Computing and Information Processing
; 2015.
315.
Mathew J, Mekkayil L, Ramasangu H, Karthikeyan BR, Manjunath AG. Robust algorithm for early detection of Alzheimer’s disease using multiple feature extractions. Bangalore:
IEEE Annual India Conference (INDICON)
; 2016. pp. 1–6.
316.
Escudero J, Ifeachor E, Zajicek JP, Green C, Shearer J, Pearson S; Alzheimer’s Disease Neuroimaging Initiative. Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease.
IEEE Trans Biomed Eng
. 2013 Jan;60(1):164–8.
317.
Gunawardena KA, Rajapakse RN, Kodikara ND, Mudalige IU. Moving from detection to pre-detection of Alzheimer’s Disease from MRI data. Negombo: Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer); 2016. p. 324.
318.
Zhang J, Liu M, Le An Y, Gao Y, Shen D. Alzheimer’s Disease Diagnosis Using Landmark-Based Features From Longitudinal Structural MR Images.
IEEE J Biomed Health Inform
. 2017 Nov;21(6):1607–16.
319.
Escudero J, Zajicek JP, Ifeachor E. Early detection and characterization of Alzheimer's disease in clinical scenarios using Bioprofile concepts and K-means.
Conf Proc IEEE Eng Med Biol Soc
. 2011;2011:6470–3.
320.
Zhang J, Gao Y, Gao Y, Munsell BC, Shen D. Detecting Anatomical Landmarks for Fast Alzheimer’s Disease Diagnosis.
IEEE Trans Med Imaging
. 2016 Dec;35(12):2524–33.
321.
Iftikhar MA, Idris A. An ensemble classification approach for automated diagnosis of Alzheimer’s disease and mild cognitive impairment. International Conference on Open Source Systems & Technologies (ICOSST); 2016. pp. 78–83.
322.
Bates J, Pafundi D, Kanel P, Liu X, Mio W. Spectral signatures of point clouds and applications to detection of Alzheimer’s Disease through Neuroimaging. Chicago: IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2011. pp. 1851–4.
323.
Ye DH, Pohl KM, Davatzikos C. Semi-supervised Pattern Classification: Application to Structural MRI of Alzheimer’s Disease. Seoul: International Workshop on Pattern Recognition in NeuroImaging; 2011.
324.
Rabeh AB, Benzarti F, Amiri H. New Method of Classification to Detect Alzheimer Disease. 14th International Conference on Computer Graphics, Imaging and Visualization; 2017.
325.
Ullah HM, Onik Z, Islam R, Nandi D. Alzheimer's Disease and Dementia Detection from 3D Brain MRI Data Using Deep Convolutional Neural Networks. Pune: 3rd International Conference for Convergence in Technology (I2CT); 2018.
326.
Donini M, Monteiro JM, Pontil M, Shawe-Taylor J, Mourao-Miranda J. A multimodal multiple kernel learning approach to Alzheimer’s disease detection. Vietri sul Mare: IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP); 2016.
327.
Sarraf S, Tofighi G, Deep AD. AD Classification via Deep Convolutional Neural Networks using MRI and fMRI.
bioRxiv
. 2016.
328.
Liu M, Cheng D, Wang K, Wang Y; Alzheimer’s Disease Neuroimaging Initiative. Multi-Modality Cascaded Convolutional Neural Networks for AD Diagnosis.
Neuroinformatics
. 2018 Oct;16(3-4):295–308.
329.
McCrackin L, Bagheri E, Cheung JCK. Early Detection of AD Using Deep Learning. in Springer International Publishing AG, part of Springer Nature 2018 Canadian AI 2018; 2018. pp. 355–359.
330.
Basaia S, Agosta F, Wagner L, Canu E, Magnani G, Santangelo R, et al.; Alzheimer’s Disease Neuroimaging Initiative. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks.
Neuroimage Clin
. 2019;21:101645.
331.
Hosseini-Asl E, Keynton R, El-Baz A. Ad Diagnostics By Adaptation Of 3d Convolutional Network. In the IEEE 2016 International Conference on Image Processing; 2016.
332.
Awate GJ, Bangare SL. Detection of AD from MRI using Convolutional Neural Network with Tensorflow. IEEE Xplore 2018.
333.
Billones CD, Demetria OJL, Hostallero DE, Naval PC. DemNet: A Convolutional Neural Network for the Detection of AD and Mild Cognitive Impairment. In IEEE Region 10 Conference. TENCON; 2016.
334.
Gunawardena KANN, Rajapaksey RN, Kodikara ND. Applying Convolutional Neural Networks for Pre-detection of AD from Structural MRI data. 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE 2017.
335.
Farooq A, Anwar SM, Awais M, Rehman S. A deep CNN based Multi-Class classification of Alzheimers Disease using MRI. IEEE International Conference on Imaging Systems and Techniques (IST); 2017.
336.
Luo S, Li X, Li J; for the AD Neuroimaging Initiative. Automatic AD Recognition from MRI Data Using Deep Learning Method.
Z Angew Math Phys
. 2017;5:1892–8.
337.
Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, et al.; Alzheimer’s Disease Neuroimaging Initiative. Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment.
Front Neurosci
. 2018 Nov;12:777.
338.
Li W, Tian J, Li E, Dai J. Robust unsupervised segmentation of infarct lesion from diffusion tensor MR images using multiscale statistical classification and partial volume voxel reclassification.
Neuroimage
. 2004 Dec;23(4):1507–18.
339.
Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar Lima D. New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities.
Comput Methods Programs Biomed
. 2017 Sep;148:27–43.
340.
Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME. Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke.
Ann Neurol
. 1997 May;41(5):574–80.
341.
Wang Y, Xiang S, Pan C, Wang L, Meng G. Level set evolution with locally linear classification for image segmentation.
Pattern Recognit
. 2013;46(6):1734–46.
342.
Alpert S, Galun M, Brandt A, Basri R. Image segmentation by probabilistic bottom-up aggregation and cue integration.
IEEE Trans Pattern Anal Mach Intell
. 2012 Feb;34(2):315–26.
343.
Ji Z, Xia Y, Zheng Y. Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed
. 2017 Nov;151:123–38.
344.
Sridevi M, Mala C. Self-organizing neural networks for image segmentation based on mulitphase active contour.
Neural Comput Appl
. 2019;31(2):865–76.
345.
Agrawal S, Panda R, Dora L. A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches.
Appl Soft Comput
. 2014;24:522–33.
346.
Monteiro M, Fonseca AC, Freitas AT, Pinho E Melo T, Francisco AP, Ferro JM, et al. Using machine learning to improve the prediction of functional outcome in ischemic stroke patients.
IEEE/ACM Trans Comput Biol Bioinform.
2018 Nov-Dec;15(6):1953–9.
347.
Matesin M, Loncaric S, Petravic D. A rule based approach to stroke lesion analysis from CT brain images.
Proc.of the 2nd Int Symposium on Image and Signal Processing and Analysis
. 2001; 219–223.
348.
Ghosh N, Recker R, Shah A, Bhanu B, Ashwal S, Obenaus A. Automated ischemic lesion detection in a neonatal model of hypoxic ischemic injury.
J Magn Reson Imaging
. 2011 Apr;33(4):772–81.
349.
Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke.
Neuroimage
. 2014 Sep;98:324–35.
350.
Maier O, Wilms M, von der Gablentz J, Krämer UM, Münte TF, Handels H. Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences.
J Neurosci Methods
. 2015 Jan;240:89–100.
351.
Griffis JC, Allendorfer JB, Szaflarski JP. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans.
J Neurosci Methods
. 2016 Jan;257:97–108.
352.
Pustina D, Coslett HB, Turkeltaub PE, Tustison N, Schwartz MF, Avants B. Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis.
Hum Brain Mapp
. 2016 Apr;37(4):1405–21.
353.
Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.
Comput Med Imaging Graph
. 2016 Sep;52:89–103.
354.
Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks.
Neuroimage Clin
. 2017 Jun;15:633–43.
355.
Muda AF, Saad NM, Abu-Bakar SAR, Muda S, Abdullah AR. Brain lesion segmentation using fuzzy C-means on diffusion-weighted imaging.
ARPN J Eng Appl Sci
. 2015;10:1138–44.
356.
Bentley P, Ganesalingam J, Carlton Jones AL, Mahady K, Epton S, Rinne P, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning.
Neuroimage Clin
. 2014 Mar;4(4):635–40.
357.
Lebedev G, Klimenkoa H, Kachkovskiy S, Konushin V, Ryabkov I, Gromov A. Application of artificial intelligence methods to recognize pathologies on medical images.
Procedia Comput Sci
. 2018;126:1171–7.
358.
Subudhi A, Acharya UR, Dash M, Jena S, Sabut S. Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images.
Comput Biol Med
. 2018;103:116–29.
359.
Subudhi A, Jena S, Sabut S. Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI.
Med Biol Eng Comput
. 2018 May;56(5):795–807.
360.
Chin C-L, Lin B-J, Wu G-R, Weng T-C, Yang C-S, Su R-C, Pan Y-J. An Automated Early Ischemic Stroke Detection System using CNN Deep Learning Algorithm. IEEE 8th International Conference on Awareness Science and Technology (iCAST 2017); 2017.
361.
Elliott C, Arnold DL, Collins DL, Arbel T. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.
IEEE Trans Med Imaging
. 2013 Aug;32(8):1490–503.
362.
Anbeek P, Vincken KL, van Osch MJ, -Bisschops RH, van der Grond J. Automatic segmentation of different-sized white matter lesions by voxel probability estimation.
Med Image Anal
. 2004 Sep;8(3):205–15.
363.
Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S. Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI.
J Magn Reson Imaging
. 2003 Mar;17(3):300–8.
364.
Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, et al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.
Acad Radiol
. 2008 Mar;15(3):300–13.
365.
Zhang YD, Pan C, Sun J, Tang C. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU.
J Comput Sci
. 2018;28:1–10.
366.
Wang SH, Tang C, Sun J, Yang J, Huang C, Phillips P, et al. Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling.
Front Neurosci
. 2018 Nov;12:818.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.