The complex, nonlinear and non-stationary electroencephalogram (EEG) signals are very tedious to interpret visually and highly difficult to extract the significant features from them. The linear and nonlinear methods are effective in identifying the changes in EEG signals for the detection of depression. Linear methods do not exhibit the complex dynamical variations in the EEG signals. Hence, chaos theory and nonlinear dynamic methods are widely used in extracting the EEG signal features for computer-aided diagnosis (CAD) of depression. Hence, this article presents the recent efforts on CAD of depression using EEG signals with a focus on using nonlinear methods. Such a CAD system is simple to use and may be used by the clinicians as a tool to confirm their diagnosis. It should be of a particular value to enable the early detection of depression.

1.
World Health Organization (WHO): World Suicide Prevention Day 2012. http://www.who.int/mediacentre/events/annual/world_suicide_prevention_day/en.
2.
National Alliance on Mental Illness (NAMI): Latina Women and Depression FACT Sheet, 2012.
3.
WHO: World Health Assembly (WHA) Resolution 65th Report by Secretariat, 2012, pp 1-4. http://apps.who.int/gb/ebwha/pdf_files/WHA65/A65_R4-en.pdf?ua=1 (accessed November 28, 2014).
4.
Davidson RJ: Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology 1998;35:607-614.
5.
Allen JJ, Iacono WG, Depue RA, Arbisi P: Regional electroencephalographic asymmetries in bipolar seasonal affective disorder before and after exposure to bright light. Biol Psychiatry 1993;33:642-646.
6.
Gotlib IH, et al: Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cogn Emot 1998;12:449-478.
7.
Henriques JB, Davidson RJ: Left frontal hypoactivation in depression. J Abnorm Psychol 1991;100:535-545.
8.
Nandrino JL, Pezard L, Martinerie J, el Massioui F, Renault B, Jouvent R, Allilaire JF, Widlöcher D: Decrease of complexity in EEG as a symptom of depression. Neuroreport 1994;5:528-530.
9.
Deng Z, Zhang Z: Event-related complexity analysis and its application in the detection of facial attractiveness. Int J Neural Syst 2014;24:1450026.
10.
Pezard L, Nandrino JL, Renault B, el Massioui F, Allilaire JF, Müller F, Varela F, Martinerie J: Depression as a dynamical disease. Biol Psychiatry 1996;39:991-999.
11.
Deslandes AC, de Moraes H, Pompeu FA, Ribeiro P, Cagy M, Capitão C, Alves H, Piedade RA, Laks J: Electroencephalographic frontal asymmetry and depressive symptoms in the elderly. Biol Psychol 2008;79:317-322.
12.
Allen JJ, Urry HL, Hitt SK, Coan JA: The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology 2004;41:269-280.
13.
Debener S, Beauducel A, Nessler D, Brocke B, Heilemann H, Kayser J: Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients. Neuropsychobiology 2000;41:31-37.
14.
Stewart JL, Bismark AW, Towers DN, Coan JA, Allen JJ: Resting frontal EEG asymmetry as an endophenotype for depression risk: sex-specific patterns of frontal brain asymmetry. J Abnorm Psychol 2010;119:502-512.
15.
Banoczi W: How some drugs affect the electroencephalogram (EEG). Am J Electroneurodiagnostic Technol 2005;45:118-129.
16.
Blume WT: Drug effects on EEG. J Clin Neurophysiol 2006;23:306-311.
17.
Bauer G, Bauer R: EEG drug effects and central nervous system poisoning; in Niedermeyer E, Lopes da Silva FH (eds): Electroencephalography, ed 5. Philadelphia, Lippincott, Williams & Wilkins, 2005, pp 701-724.
18.
Van CA, Brenner RP: Drug effects and toxic encephalopathies; in Ebersole JS, Pedley TA (eds): Current practice of clinical electroencephalography, ed 3. Philadelphia, Lippincott, Williams & Wilkins, 2003, pp 463-483.
19.
Saletu B, Grünberger J, Rajna P, Karobath M: Clovoxamine and fluvoxamine-2 biogenic amine re-uptake inhibiting antidepressants: quantitative EEG, psychometric and pharmacokinetic studies in man. J Neural Transm 1980;49:63-86.
20.
Hunter AM, Leuchter AF, Morgan ML, Cook IA: Changes in brain function (quantitative EEG cordance) during placebo lead-in and treatment outcomes in clinical trials for major depression. Am J Psychiatry 2006;163:1426-1432.
21.
Davidson RJ: Cerebral asymmetry, emotion, and affective style; in Davidson RJ, Hugdahl K (eds): Brain Asymmetry. Cambridge, MIT Press, 1995, pp 361-387.
22.
Blackhart GC, Minnix JA, Kline JP: Can EEG asymmetry patterns predict future development of anxiety and depression? A preliminary study. Biol Psychol 2006;72:46-50.
23.
Smit DJ, Posthuma D, Boomsma DI, De Geus EJ: The relation between frontal EEG asymmetry and the risk for anxiety and depression. Biol Psychol 2007;74:26-33.
24.
Mallikarjun HM, Suresh HN: Depression level prediction using EEG signal processing. Contemporary computing and informatics (IC3I). IEEE International Conference, 2014, pp 928-933.
25.
Iosifescu DV, Greenwald S, Devlin P, Mischoulon D, Denninger JW, Alpert JE, Fava M: Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharmacol 2009;19:772-777.
26.
Salustri C, Tecchio F, Zappasodi F, Bevacqua G, Fontana M, Ercolani M, Milazzo D, Squitti R, Rossini PM: Cortical excitability and rest activity properties in patients with depression. J Psychiatry Neurosci 2007;32:259-266.
27.
Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S: Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci Res 2006;56:133-144.
28.
Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD: Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clin Neurophysiol 2010;121:281-289.
29.
Flor-Henry P, Lind JC, Koles ZJ: A source-imaging (low-resolution electromagnetic tomography) study of the EEGs from unmedicated males with depression. Psychiatry Res 2004;130:191-207.
30.
Nissen C, Feige B, König A, Voderholzer U, Berger M, Riemann D: Delta sleep ratio as a predictor of sleep deprivation response in major depression. J Psychiatr Res 2001;35:155-163.
31.
Nissen C, Feige B, Nofzinger EA, Voderholzer U, Berger M, Riemann D: EEG slow wave activity regulation in major depression. Somnologie (Berl) 2006;10:36-42.
32.
Knott V, Mahoney C, Kennedy S, Evans K: EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res 2001;106:123-140.
33.
Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS: Automated EEG analysis of epilepsy: a review. Knowl Based Syst 2013;45:147-165.
34.
Adeli H, Zhou Z, Dadmehr N: Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 2003;123:69-87.
35.
Adeli H, Ghosh-Dastidar S, Dadmehr N: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 2007;54:205-211.
36.
Chua KC, Chandran V, Acharya R, Lim CM: Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: a comparative study. 30th Annual International IEEE EMBS Conference, Canada, 2008, pp 3824-3827.
37.
Chua KC, Chandran V, Acharya UR, Lim CM: Automatic identification of epileptic electroencephalography signals using higher-order spectra. Proc Inst Mech Eng H 2009;223:485-495.
38.
Chua CK, Chandran V, Acharya RU, Min LC: Cardiac health diagnosis using higher order spectra and support vector machine. Open Med Inform J 2009;3:1-8.
39.
Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK, Ng EY, Tong L: Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. Int J Neural Syst 2012;22:1250027.
40.
Martis RJ, Acharya UR, Tan JH, Petznick A, Tong L, Chua CK, Ng EY: Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int J Neural Syst 2013;23:1350023.
41.
Yuan Q, Zhou W, Yuan S, Li X, Wang J, Jia G: Epileptic EEG classification based on kernel sparse representation. Int J Neural Syst 2014;24:1450015.
42.
Adeli H, Ghosh-Dastidar S, Dadmehr N: A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease. Neurosci Lett 2008;444:190-194.
43.
Puthankattil SD, Joseph PK: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy. J Mech Med Biol 2012;12:1240019.
44.
Faust O, Ang PAC, Puthankattil SD, Joseph PK: Depression diagnosis support system based on EEG signal entropies. J Mech Med Biol 2014;14:1450035.
45.
Hosseinifard B, Moradi MH, Rostami R: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed 2013;109:339-345.
46.
Acharya UR, Faust O, Kannathal N, Chua T, Laxminarayan S: Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 2005;80:37-45.
47.
Acharya UR, Chua EC, Chua KC, Min LC, Tamura T: Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst 2010;20:509-521.
48.
Mandelbrot BB: The fractal geometry of nature, ed 1. New York, WH Freeman and Company, 1982.
49.
Higuchi T: Approach to an irregular time series on the basis of the fractal theory. Phys D 1988;31:277-283.
50.
Marwan N, Thiel M, Nowaczyk NR: Cross recurrence plot based synchronization of time series. Nonlinear Process Geophys 2002;9:325-331.
51.
Marwan N, Romano MC, Thiel M, Kurths J: Recurrence plots for the analysis of complex systems. Phys Rep 2007;438:237-329.
52.
Chua KC, Chandran V, Acharya UR, Lim CM: Computer-based analysis of cardiac state using entropies, recurrence plots and Poincare geometry. J Med Eng Technol 2006;30:703-712.
53.
Chua KC, Chandran V, Acharya UR, Lim CM: Cardiac state diagnosis using higher order spectra of heart rate variability. J Med Eng Technol 2008;32:145-155.
54.
Chua KC, Chandran V, Acharya UR, Lim CM: Application of higher order spectra to identify epileptic EEG. J Med Syst 2011;35:1563-1571.
55.
Richman JS, Moorman JR: Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000;278:H2039-H2049.
56.
Zhang C, Wang H, Wang H, Wu MH: EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr Comput Aided Eng 2013;20:391-405.
57.
Pincus SM, Keefe DL: Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 1992;262:E741-E754.
58.
Wolf A, Swift JB, Swinney HL, Vastano JA: Determining Lyapunov exponents from a time series. Physica D 1985;16:285-317.
59.
Dangel S, Meier PF, Moser HR, Plibersek S, Shen Y: Time series analysis of sleep EEG. Comput Assist Phys 1999;14:93-95.
60.
Lee JM, Kim DJ, Kim IY, Park KS, Kim SI: Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Comput Biol Med 2002;32:37-47.
61.
Box JF: Guinness, Gosset, Fisher, and small samples. Stat Sci 1987;2:45-52.
62.
Li D, Xu L, Goodman E, Xu Y, Wu Y: Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integr Comput Aided Eng 2013;20:201-216.
63.
Vapnik V: Statistical Learning Theory. Willey, New York, 1998.
64.
Burgess CJ: A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998;2:1-47.
65.
Han J, Kamber M, Pei J: Data Mining: Concepts and Techniques, ed 2. Morgan Kaufmann, 2005, pp 292-295, 348-349.
66.
Ahmadlou M, Adeli H, Adeli A: Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol 2012;85:206-211.
67.
Adeli H, Ghosh-Dastidar S: Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology. Boca Raton, Florida, CRC Press, Taylor & Francis, 2010, pp 119-160.
68.
Hsu WY: Single-trial motor imagery classification using asymmetry ratio, phase relation, wavelet-based fractal, and their selected combination. Int J Neural Syst 2013;23:1350007.
69.
Wang Y, Zhou W, Yuan Q, Li X, et al: Comparison of ictal and interictal EEG signals using fractal features. Int J Neural Syst 2013;23:1350028.
70.
Adeli H, Panakkat A: A probabilistic neural network for earthquake magnitude prediction. Neural Netw 2009;22:1018-1024.
71.
Ahmadlou M, Adeli H: Enhanced probabilistic neural network with local decision circles: a robust classifier. Integr Comput Aided Eng 2010;17:197-210.
72.
Sankari Z, Adeli H: Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence. J Neurosci Methods 2011;197:165-170.
73.
Kodogiannis VS, Amina M, Petrounias I: A clustering-based fuzzy wavelet neural network model for short-term load forecasting. Int J Neural Syst 2013;23:1350024.
74.
Perez G, Conci A, Moreno AB, Hernandez JA: Rician noise attenuation in the wavelet packet transformed domain for brain MRI. Integr Comput Aided Eng 2014;21:163-175.
75.
Amiri GG, Abdolahi AR, Hazaveh NK: Wavelet-based method for generating nonstationary artificial pulse-like near-fault ground motions. Comput-Aided Civ Inf 2014;29:758-770.
76.
Dai H, Xue G, Wang W: An adaptive wavelet frame neural network method for efficient reliability analysis. Comput-Aided Civ Inf 2014;29:801-814.
77.
Katicha SW, Flintsch G, Bryce J, Ferne B: Wavelet denoising of TSD deflection slope measurements for improved pavement structural evaluation. Comput-Aided Civ Inf 2014;29:399-415.
78.
Amini F, Zabihi-Samani M: A wavelet-based adaptive pole assignment method for structural control. Comput-Aided Civ Inf Eng 2014;29:464-477.
79.
Adeli H, Hung SL: Machine Learning - Neural Networks, Genetic Algorithms, and Fuzzy Systems. New York, John Wiley & Sons, 1995.
80.
Adeli H, Park HS: Neurocomputing for Design Automation. Boca Raton, Florida, CRC Press, 1998, pp 35-54.
81.
Siddique N, Adeli H: Computational Intelligence - Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. United Kingdom, Wiley, West Sussex, 2013, pp 103-156.
82.
Ahmadlou M, Adeli H, Adeli A: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men. Clin EEG Neurosci 2013;44:175-181.
83.
Jiang X, Adeli H: Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Comput-Aided Civ Inf 2004;19:324-337.
84.
Jiang X, Mahadevan S, Adeli H: Bayesian wavelet packet denoising for structural system identification. Struct Control Health Monit 2007;14:333-356.
85.
Su WC, Huang CS, Chen CH, Liu CY, Huang HC, Le QT: Identifying the modal parameters of a structure from ambient vibration data via the stationary wavelet packet. Comput-Aided Civ Inf 2014;29:738-757.
86.
Bachmann M, Lass J, Suhhova A, Hinrikus H: Spectral asymmetry and Higuchi's fractal dimension measures of depression electroencephalogram. Comput Math Methods Med 2013;2013:251638.
87.
Yuan Q, Zhou W, Yuan S, Li X, Wang J, Jia G: Epileptic EEG classification based on kernel sparse representation. Int J Neural Syst 2014;24:1450015.
88.
Osorio I: Automated seizure detection using EKG. Int J Neural Syst 2014;24:1450001.
89.
Acharya UR, Vidya KS, Shreya B, Adeli H, Adeli A: Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav 2014;41:257-263.
90.
Hu M, Liang H: Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex. Int J Neural Syst 2013;23:1350005.
91.
Acharya UR, Yanti R, Wei ZJ, Ramakrishnan MM, Hong TJ, Martis RJ, Min LC: Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int J Neural Syst 2013;23:1350009.
92.
Martis RJ, Acharya UR, Lim CM, Mandana KM, Ray AK, Chakraborty C: Application of higher order cumulant features for cardiac health diagnosis using ECG signals. Int J Neural Syst 2013;23:1350014.
93.
Rodríguez-Bermúdez G, García-Laencina PJ, Roca-Dorda J: Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces. Int J Neural Syst 2013;23:1350015.
94.
Lin LC, Ouyang CS, Chiang CT, Yang RC, Wu RC, Wu HC: Early prediction of medication refractoriness in children with idiopathic epilepsy based on scalp EEG analysis. Int J Neural Syst 2014;24:1450023.
95.
Koppert M, Kalitzin S, Velis D, Lopes da Silva F, Viergever MA: Dynamics of collective multi-stability in models of distributed neuronal systems. Int J Neural Syst 2014;24:1430004.
96.
Cong F, Phan AH, Astikainen P, Zhao Q, Wu Q, Hietanen JK, Ristaniemi T, Cichocki A: Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG. Int J Neural Syst 2013;23:1350006.
97.
Fu R, Wang H: Detection of driving fatigue by using noncontact EMG and ECG signals measurement system. Int J Neural Syst 2014;24:1450006.
98.
Bauer PR, Kalitzin S, Zijlmans M, Sander JW, Visser GH: Cortical Excitability as a potential clinical marker of epilepsy: a review of the clinical application of transcranial magnetic stimulation. Int J Neural Syst 2014;24:1430001.
99.
Acharya UR, Vidya KS, Adeli H, Jayasree S, Koh JEW, Adeli A, Subha PD: Novel depression diagnosis index using nonlinear features in EEG signals. Eur Neurol 2015 (under review).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.