A procedure has been developed for characterizing the various molecular forms of placental and liver glutamate dehydrogenases through a combination of activity staining and varying gel pore size in electrophoresis. At a concentration of 2 mg/ml, the bovine liver GDH remained associated in a very high molecular weight form, while the placental enzyme was substantially dissociated to a molecular species of near 240,000 molecular weight and several charge isomeric species of near 160,000 molecular weight. The general approach outlined here provides a means of definitely correlating the electrophoretic behavior of various dehydrogenase isozymes with both glutamate and alanine dehydrogenase activities and molecular size and should be applicable, even in crude extracts to other dehydrogenase enzymes which exhibit multiple forms or states of association.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.