Introduction: Problematic internet use (PIU) is a psychopathology that includes multiple symptoms and psychological constructs. Because no studies have considered both network structures and clusters among individual symptoms in the context of PIU in a Korean adolescent population, this study aimed to investigate network structures and clustering in relation to PIU symptoms in adolescents. Methods: Overall, 73,238 adolescents were included. PIU severity was assessed using a self-rating scale comprising 20 items and 6 subscales, namely, the Internet Addiction Proneness Scale for Youth-Short Form; KS scale. Network structures and clusters among symptoms were analyzed using a Gaussian graphical model and exploratory graph analysis, respectively. Centrality of strength, closeness, and betweenness scores was also calculated. Results: Our study identified four clusters: disturbance in adaptive functioning, virtual interpersonal relationships, withdrawal, and tolerance. The symptom of confidence served as a node bridging the cluster of virtual interpersonal relationships and other clusters of withdrawal and disturbances of adaptive function. The symptom of craving served as a bridge between the clusters of withdrawal and tolerance with high betweenness centrality. Conclusion: This study identified network structures and clustering among PIU symptoms in adolescents and revealed that positive experiences derived from online interpersonal relationships were an important mechanism underlying PIU. These are novel insights concerning the interconnection among multiple symptoms and related clustering for the mechanism of adolescent PIU in terms of KS-scale PIU assessment.

1.
Internet World Stats
.
Internet growth statistics
[cited 2020 Jun 18]. Available from: https://www.internetworldstats.com/emarketing.htm.
2.
Internet World Stats
.
World internet usage and population statistics 2020 year-Q1 estimates
[cited 2020 Jun 18]. Available from: https://www.internetworldstats.com/stats.htm.
3.
Jobst
N
.
South Korea: internet penetration 2000-2021
[cited 2023 Aug 8]. Available from: https://www.statista.com/statistics/255859/internet-penetration-in-south-korea/.
4.
Eurostat
.
Digital economy and society statistics - households and individuals
[cited 2023 Aug 8]. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Digital_economy_and_society_statistics_-_households_and_individuals.
5.
Keles
B
,
McCrae
N
,
Grealish
A
.
A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents
.
Int J Adolesc Youth
.
2020
;
25
(
1
):
79
93
.
6.
Lanthier-Labonté
S
,
Dufour
M
,
Milot
DM
,
Loslier
J
.
Is problematic Internet use associated with alcohol and cannabis use among youth? A systematic review
.
Addict Behav
.
2020
;
106
:
106331
.
7.
Marchant
A
,
Hawton
K
,
Stewart
A
,
Montgomery
P
,
Singaravelu
V
,
Lloyd
K
, et al
.
A systematic review of the relationship between internet use, self-harm and suicidal behaviour in young people: the good, the bad and the unknown
.
PLoS One
.
2017
;
12
(
8
):
e0181722
.
8.
McCrae
N
,
Gettings
S
,
Purssell
E
.
Social media and depressive symptoms in childhood and adolescence: a systematic review
.
Adolesc Res Rev
.
2017
;
2
(
4
):
315
30
.
9.
Sedgwick
R
,
Epstein
S
,
Dutta
R
,
Ougrin
D
.
Social media, internet use and suicide attempts in adolescents
.
Curr Opin Psychiatry
.
2019
;
32
(
6
):
534
41
.
10.
Spada
MM
.
An overview of problematic internet use
.
Addict Behav
.
2014
;
39
(
1
):
3
6
.
11.
Griffiths
MD
,
Davies
MN
,
Chappell
D
.
Online computer gaming: a comparison of adolescent and adult gamers
.
J Adolesc
.
2004
;
27
(
1
):
87
96
.
12.
Shapira
NA
,
Lessig
MC
,
Goldsmith
TD
,
Szabo
ST
,
Lazoritz
M
,
Gold
MS
, et al
.
Problematic internet use: proposed classification and diagnostic criteria
.
Depress Anxiety
.
2003
;
17
(
4
):
207
16
.
13.
Young
KS
,
De Abreu
CN
.
Internet addiction: a handbook and guide to evaluation and treatment
.
New Jersey
:
John Wiley & Sons, Inc
;
2011
.
14.
Chou
C
,
Condron
L
,
Belland
JC
.
A review of the research on Internet addiction
.
Educ Psychol Rev
.
2005
;
17
(
4
):
363
88
.
15.
Li
X
,
Newman
J
,
Li
D
,
Zhang
H
.
Temperament and adolescent problematic Internet use: the mediating role of deviant peer affiliation
.
Comput Hum Behav
.
2016
;
60
:
342
50
.
16.
Ceyhan
AA
,
Ceyhan
E
.
Loneliness, depression, and computer self-efficacy as predictors of problematic internet use
.
Cyberpsychol Behav
.
2008
;
11
(
6
):
699
701
.
17.
Young
KS
.
Internet addiction: the emergence of a new clinical disorder
.
Cyberpsychol Behav
.
1998
;
1
(
3
):
237
44
.
18.
Frances
A
,
First
MB
,
Pincus
HA
.
DSM-IV guidebook
.
American Psychiatric Association
;
1995
.
19.
Beard
KW
,
Wolf
EM
.
Modification in the proposed diagnostic criteria for Internet addiction
.
Cyberpsychol Behav
.
2001
;
4
(
3
):
377
83
.
20.
Tao
R
,
Huang
X
,
Wang
J
,
Zhang
H
,
Zhang
Y
,
Li
M
.
Proposed diagnostic criteria for internet addiction
.
Addiction
.
2010
;
105
(
3
):
556
64
.
21.
American Psychiatric Association
.
Diagnostic and statistical manual of mental disorders
. 5th ed.
Text rev
;
2022
.
22.
Starcevic
V
,
Aboujaoude
E
.
Internet addiction: reappraisal of an increasingly inadequate concept
.
CNS Spectr
.
2017
;
22
(
1
):
7
13
.
23.
American Psychiatric Association
.
Diagnostic and statistical manual of mental disorders (DSM-5)
.
American Psychiatric Pub
;
2013
.
24.
Fried
EI
,
Nesse
RM
.
Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential
.
BMC Med
.
2015
;
13
(
1
):
72
.
25.
Fried
EI
.
Problematic assumptions have slowed down depression research: why symptoms, not syndromes are the way forward
.
Front Psychol
.
2015
;
6
:
309
.
26.
Fried
EI
,
Cramer
AOJ
.
Moving forward: challenges and directions for psychopathological network theory and methodology
.
Perspect Psychol Sci
.
2017
;
12
(
6
):
999
1020
.
27.
Herman
MA
,
Roberto
M
.
The addicted brain: understanding the neurophysiological mechanisms of addictive disorders
.
Frontiers Media SA
;
2015
; p.
18
.
28.
Chekroud
AM
,
Gueorguieva
R
,
Krumholz
HM
,
Trivedi
MH
,
Krystal
JH
,
McCarthy
G
.
Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach
.
JAMA Psychiatry
.
2017
;
74
(
4
):
370
8
.
29.
Fisher
AJ
,
Reeves
JW
,
Lawyer
G
,
Medaglia
JD
,
Rubel
JA
.
Exploring the idiographic dynamics of mood and anxiety via network analysis
.
J Abnorm Psychol
.
2017
;
126
(
8
):
1044
56
.
30.
Katzman
MA
,
Wang
X
,
Wajsbrot
DB
,
Boucher
M
.
Effects of desvenlafaxine versus placebo on MDD symptom clusters: a pooled analysis
.
J Psychopharmacol
.
2020
;
34
(
3
):
280
92
.
31.
Van Loo
H
,
Van Borkulo
C
,
Peterson
R
,
Fried
E
,
Aggen
S
,
Borsboom
D
, et al
.
Robust symptom networks in recurrent major depression across different levels of genetic and environmental risk
.
J Affect Disord
.
2018
;
227
:
313
22
.
32.
Corponi
F
,
Anmella
G
,
Verdolini
N
,
Pacchiarotti
I
,
Samalin
L
,
Popovic
D
, et al
.
Symptom networks in acute depression across bipolar and major depressive disorders: a network analysis on a large, international, observational study
.
Eur Neuropsychopharmacol
.
2020
;
35
:
49
60
.
33.
Mullarkey
MC
,
Stein
AT
,
Pearson
R
,
Beevers
CG
.
Network analyses reveal which symptoms improve (or not) following an Internet intervention (Deprexis) for depression
.
Depress Anxiety
.
2020
;
37
(
2
):
115
24
.
34.
Levinson
CA
,
Hunt
RA
,
Keshishian
AC
,
Brown
ML
,
Vanzhula
I
,
Christian
C
, et al
.
Using individual networks to identify treatment targets for eating disorder treatment: a proof-of-concept study and initial data
.
J Eat Disord
.
2021
;
9
:
147
18
.
35.
Lu
J
,
Zhang
Q
,
Zhong
N
,
Chen
J
,
Zhai
Y
,
Guo
L
, et al
.
Addiction symptom network of young internet users: network analysis
.
J Med Internet Res
.
2022
;
24
(
11
):
e38984
.
36.
Hirota
T
,
McElroy
E
,
So
R
.
Network analysis of internet addiction symptoms among a clinical sample of Japanese adolescents with autism spectrum disorder
.
J Autism Dev Disord
.
2021
;
51
(
8
):
2764
72
.
37.
Freichel
R
,
Kroon
E
,
Kuhns
L
,
Filbey
F
,
Veer
IM
,
Wiers
R
, et al
.
Cannabis use disorder symptoms in weekly cannabis users: a network comparison between daily cigarette users and nondaily cigarette users
.
Cannabis Cannabinoid Res
;
2023
.
38.
Kim
D
,
Chung
Y
,
Lee
E
,
Kim
D
,
Cho
Y
.
Development of internet addiction proneness scale-short form (KS scale)
.
Korea J Counsel
.
2008
;
9
(
4
):
1703
22
.
39.
Lee
YS
,
Han
DH
,
Kim
SM
,
Renshaw
PF
.
Substance abuse precedes Internet addiction
.
Addict Behav
.
2013
;
38
(
4
):
2022
5
.
40.
Sohn
M
,
Oh
H
,
Lee
SK
,
Potenza
MN
.
Suicidal ideation and related factors among Korean high school students: a focus on cyber addiction and school bullying
.
J Sch Nurs
.
2018
;
34
(
4
):
310
8
.
41.
Kim
Y
,
Choi
S
,
Chun
C
,
Park
S
,
Khang
YH
,
Oh
K
.
Data resource profile: the Korea youth risk behavior web-based survey (KYRBS)
.
Int J Epidemiol
.
2016
;
45
(
4
):
1076
1076e
.
42.
Epskamp
S
,
Borsboom
D
,
Fried
EI
.
Estimating psychological networks and their accuracy: a tutorial paper
.
Behav Res Methods
.
2018
;
50
(
1
):
195
212
.
43.
Golino
H
,
Shi
D
,
Christensen
AP
,
Garrido
LE
,
Nieto
MD
,
Sadana
R
, et al
.
Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: a simulation and tutorial
.
Psychol Methods
.
2020
;
25
(
3
):
292
320
.
44.
Golino
HF
,
Epskamp
S
.
Exploratory graph analysis: a new approach for estimating the number of dimensions in psychological research
.
PLoS One
.
2017
;
12
(
6
):
e0174035
.
45.
Pons
P
,
Latapy
M
.
Computing communities in large networks using random walks
. In:
International symposium on computer and information sciences
.
Springer
;
2005
; p.
284
93
.
46.
Reichardt
J
,
Bornholdt
S
.
Statistical mechanics of community detection
.
Phys Rev E Stat Nonlin Soft Matter Phys
.
2006
;
74
(
1 Pt 2
):
016110
.
47.
Heeren
A
,
McNally
RJ
.
An integrative network approach to social anxiety disorder: the complex dynamic interplay among attentional bias for threat, attentional control, and symptoms
.
J Anxiety Disord
.
2016
;
42
:
95
104
.
48.
Weintraub
MJ
,
Schneck
CD
,
Miklowitz
DJ
.
Network analysis of mood symptoms in adolescents with or at high risk for bipolar disorder
.
Bipolar Disord
.
2020
;
22
(
2
):
128
38
.
49.
Christensen
AP
,
Garrido
LE
,
Golino
H
.
Comparing community detection algorithms in psychological data: a Monte Carlo simulation
.
2020
.
50.
Kim
KM
,
Kim
H
,
Choi
JW
,
Kim
SY
,
Kim
JW
.
What types of internet services make adolescents addicted? Correlates of problematic internet use
.
Neuropsychiatr Dis Treat
.
2020
;
16
:
1031
41
.
51.
Chou
WJ
,
Chang
YP
,
Yen
CF
.
Boredom proneness and its correlation with Internet addiction and Internet activities in adolescents with attention-deficit/hyperactivity disorder
.
Kaohsiung J Med Sci
.
2018
;
34
(
8
):
467
74
.
52.
Kayri
M
,
Gunuc
S
.
Comparing internet addiction in students with high and low socioeconomic status levels
.
Addicta
.
2016
;
3
(
2
).
53.
Ko
CH
,
Yen
JY
,
Chen
CC
,
Chen
SH
,
Yen
CF
.
Proposed diagnostic criteria of Internet addiction for adolescents
.
J Nerv Ment Dis
.
2005
;
193
(
11
):
728
33
.
54.
Brown
BB
,
Larson
J
.
Peer relationships in adolescence
. In:
Lerner
RM
,
Steinberg
L
, editors.
Handbook of adolescent psychology
.
Hoboken, NJ
:
Wiley
;
2009
. p.
74
103
.
55.
Rudolph
KD
.
Puberty as a developmental context of risk for psychopathology
. In:
Handbook of developmental psychopathology
.
Springer
;
2014
; p.
331
54
.
56.
Platt
B
,
Cohen Kadosh
K
,
Lau
JY
.
The role of peer rejection in adolescent depression
.
Depress Anxiety
.
2013
;
30
(
9
):
809
21
.
57.
Buhrmester
D
.
Intimacy of friendship, interpersonal competence, and adjustment during preadolescence and adolescence
.
Child Dev
.
1990
;
61
(
4
):
1101
11
.
58.
Waldrip
AM
,
Malcolm
KT
,
Jensen-Campbell
LA
.
With a little help from your friends: the importance of high-quality friendships on early adolescent adjustment
.
Soc Development
.
2008
;
17
(
4
):
832
52
.
59.
Heider
F
.
The psychology of interpersonal relations
.
Psychology Press
;
2013
.
60.
Sullivan
CJ
.
Early adolescent delinquency: assessing the role of childhood problems, family environment, and peer pressure
.
Youth Violence Juv Justice
.
2006
;
4
(
4
):
291
313
.
61.
Nesi
J
,
Choukas-Bradley
S
,
Prinstein
MJ
.
Transformation of adolescent peer relations in the social media context: Part 1-A theoretical framework and application to dyadic peer relationships
.
Clin Child Fam Psychol Rev
.
2018
;
21
(
3
):
267
94
.
62.
Dufour
M
,
Brunelle
N
,
Tremblay
J
,
Leclerc
D
,
Cousineau
MM
,
Khazaal
Y
, et al
.
Gender difference in internet use and internet problems among Quebec high school students
.
Can J Psychiatry
.
2016
;
61
(
10
):
663
8
.
63.
Kuss
DJ
,
Shorter
GW
,
van Rooij
AJ
,
Griffiths
MD
,
Schoenmakers
TM
.
Assessing internet addiction using the parsimonious internet addiction components model-A preliminary study
.
Int J Ment Health Addict
.
2014
;
12
(
3
):
351
66
.
64.
Hamaker
EL
.
Why researchers should think “within-person”: a paradigmatic rationale
. In:
Mehl
MR
,
Conner
TS
, editors.
Handbook of research methods for studying daily life
.
The Guilford Press
;
2012
. p.
43
61
.
You do not currently have access to this content.