Aim: To compare different statistical models in order to estimate the association of alcohol consumption and total mortality when time series data stem from different regions. Data and Methods: Data on per capita consumption in 15 European countries were combined with standardized mortality rates covering different periods between 1950 and 1995. An indicator of region-specific drinking patterns was measured without reference to a concrete time point, thus generating a hierarchical data structure. Two groups of models were compared: pooled cross-sectional time series models with different error structures and hierarchical linear models (random coefficient models). Results: If historical time is not controlled for in cross-sectional models, this might result in estimating a negative association between alcohol consumption and total mortality. Hierarchical linear models or cross-sectional models controlling for historical time, however, resulted in the expected positive association. Only hierarchical linear models were able to adequately estimate the moderating effect of drinking patterns on the association between alcohol consumption and total mortality. Conclusion: For pooled cross-sectional time series data, control for the potential impact of historical time is of utmost importance. Hierarchical linear models constitute a superior alternative to analyze such complex data sets, especially as time-independent characteristics of regions can be implemented in the model.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.