Abstract
3-Methylcholanthrene treatment of C57BL/6N mice induces significant amounts of cytochromes P(1)-450, whereas P(1)-450 levels in 3-methylcholanthrene-treated DBA/2N mice are no different from those in control C57BL/6N or DBA/2N mice. Comparison of 3-methylcholanthrene-treated C57BL/6N and DBA/2N mice -thus provides a convenient means of determining the role of P(1)-450 metabolism in two strains of mice following identical drug treatment regimens. 3-Methylcholanthrene-induced P(1)-450 is shown to be more effective than other forms of P-450 in detoxifying theophylline and zoxazolamine and in enhancing the toxicity of acetaminophen. Cimetidine in vivo blocks these metabolic pathways, resulting in increased toxicity of theophylline and zoxazolamine and protection against acetaminophen toxicity. These data illustrate the double-edged sword nature of P(1)-450 metabolism and the possibility of a paradoxical effect of cimetidine during drug-drug interactions in vivo. Cimetidine is shown to inhibit in vivo and in vitro the metabolism by both 3-methylcholanthrene-induced P(1)-450 and control forms of P-450; these data suggest that cimetidine may be acting at the level of P-450 reduction by NADPH-P-450 oxidoreductase. This same mechanism of action has been previously suggested for ellipticine.