Introduction: Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes. Methods: A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia. Results: Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population. Conclusion: This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.

1.
Vexler
ZS
,
Ferriero
DM
.
Molecular and biochemical mechanisms of perinatal brain injury
.
Semin Neonatol
.
2001
;
6
(
2
):
99
108
.
2.
Shi
Z
,
Luo
K
,
Deol
S
,
Tan
S
.
A systematic review of noninflammatory cerebrospinal fluid biomarkers for clinical outcome in neonates with perinatal hypoxic brain injury that could be biologically significant
.
J Neurosci Res
.
2022
;
100
(
12
):
2154
73
.
3.
Tan
S
.
Fault and blame, insults to the perinatal brain may be remote from time of birth
.
Clin Perinatol
.
2014
;
41
(
1
):
105
17
.
4.
Vasquez-Vivar
J
,
Shi
Z
,
Luo
K
,
Thirugnanam
K
,
Tan
S
.
Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy
.
Redox Biol
.
2017
;
13
:
594
9
.
5.
Vásquez-Vivar
J
,
Shi
Z
,
Tan
S
.
Tetrahydrobiopterin in cell function and death mechanisms
.
Antioxid Redox Signal
.
2022
;
37
(
1–3
):
171
83
.
6.
Shi
Z
,
Ma
L
,
Luo
K
,
Bajaj
M
,
Chawla
S
,
Natarajan
G
, et al
.
Chorioamnionitis in the development of cerebral palsy: a meta-analysis and systematic review
.
Pediatrics
.
2017
;
139
(
6
):
e20163781
.
7.
Novak
I
,
Morgan
C
,
Adde
L
,
Blackman
J
,
Boyd
RN
,
Brunstrom-Hernandez
J
, et al
.
Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment
.
JAMA Pediatr
.
2017
;
171
(
9
):
897
907
.
8.
Shi
Z
,
Sharif
N
,
Luo
K
,
Tan
S
.
Development of A New scoring system in higher animals for testing cognitive function in the newborn period: effect of prenatal hypoxia-ischemia
.
Dev Neurosci
.
2024
:
1
15
.
9.
Derrick
M
,
Luo
NL
,
Bregman
JC
,
Jilling
T
,
Ji
X
,
Fisher
K
, et al
.
Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy
.
J Neurosci
.
2004
;
24
(
1
):
24
34
.
10.
Shi
Z
,
Luo
K
,
Jani
S
,
February
M
,
Fernandes
N
,
Venkatesh
N
, et al
.
Mimicking partial to total placental insufficiency in a rabbit model of cerebral palsy
.
J Neurosci Res
.
2022
;
100
(
12
):
2138
53
.
11.
Shi
Z
,
Luo
K
,
Tan
S
.
Cerebral palsy model of uterine ischemia in pregnant rabbits
. In:
Chen
J
,
Xu
Z
,
Xu
X
,
Zhang
J
, editors.
Animal models of acute neurological injury. Springer series in translational stroke research
.
Cham
:
Springer
;
2019
.
12.
Shi
Z
,
Vasquez-Vivar
J
,
Luo
K
,
Yan
Y
,
Northington
F
,
Mehrmohammadi
M
, et al
.
Ascending lipopolysaccharide-induced intrauterine inflammation in near-term rabbits leading to newborn neurobehavioral deficits
.
Dev Neurosci
.
2018
;
40
(
5–6
):
534
46
.
13.
Vasquez-Vivar
J
,
Whitsett
J
,
Derrick
M
,
Ji
X
,
Yu
L
,
Tan
S
.
Tetrahydrobiopterin in the prevention of hypertonia in hypoxic fetal brain
.
Ann Neurol
.
2009
;
66
(
3
):
323
31
.
14.
McKinstry
RC
,
Miller
JH
,
Snyder
AZ
,
Mathur
A
,
Schefft
GL
,
Almli
CR
, et al
.
A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns
.
Neurology
.
2002
;
59
(
6
):
824
33
.
15.
Nedelcu
J
,
Klein
MA
,
Aguzzi
A
,
Boesiger
P
,
Martin
E
.
Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage
.
Pediatr Res
.
1999
;
46
(
3
):
297
304
.
16.
Drobyshevsky
A
,
Luo
K
,
Derrick
M
,
Yu
L
,
Du
H
,
Prasad
PV
, et al
.
Motor deficits are triggered by reperfusion-reoxygenation injury as diagnosed by MRI and by a mechanism involving oxidants
.
J Neurosci
.
2012
;
32
(
16
):
5500
9
.
17.
Vasquez-Vivar
J
,
Shi
Z
,
Jeong
JW
,
Luo
K
,
Sharma
A
,
Thirugnanam
K
, et al
.
Neuronal vulnerability to fetal hypoxia-reoxygenation injury and motor deficit development relies on regional brain tetrahydrobiopterin levels
.
Redox Biol
.
2020
;
29
:
101407
.
18.
Soul
JS
,
Robertson
RL
,
Tzika
AA
,
du Plessis
AJ
,
Volpe
JJ
.
Time course of changes in diffusion-weighted magnetic resonance imaging in a case of neonatal encephalopathy with defined onset and duration of hypoxic-ischemic insult
.
Pediatrics
.
2001
;
108
(
5
):
1211
4
.
19.
Winter
JD
,
Lee
DS
,
Hung
RM
,
Levin
SD
,
Rogers
JM
,
Thompson
RT
, et al
.
Apparent diffusion coefficient pseudonormalization time in neonatal hypoxic-ischemic encephalopathy
.
Pediatr Neurol
.
2007
;
37
(
4
):
255
62
.
20.
Drobyshevsky
A
,
Derrick
M
,
Prasad
PV
,
Ji
X
,
Englof
I
,
Tan
S
.
Fetal brain magnetic resonance imaging response acutely to hypoxia-ischemia predicts postnatal outcome
.
Ann Neurol
.
2007
;
61
(
4
):
307
14
.
21.
Fedorov
A
,
Beichel
R
,
Kalpathy-Cramer
J
,
Finet
J
,
Fillion-Robin
JC
,
Pujol
S
, et al
.
3D slicer as an image computing platform for the quantitative imaging network
.
Magn Reson Imaging
.
2012
;
30
(
9
):
1323
41
.
22.
St»hle
L
,
Wold
S
.
Analysis of variance (ANOVA)
.
Chemometr Intell Lab Syst
.
1989
;
6
(
4
):
259
72
.
23.
Wilcoxon
F
,
Katti
S
,
Wilcox
RA
.
Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected tables in mathematical statistics
.
1970
;
1
:
171
259
.
24.
Afacan
O
,
Estroff
JA
,
Yang
E
,
Barnewolt
CE
,
Connolly
SA
,
Parad
RB
, et al
.
Fetal echoplanar imaging: promises and challenges
.
Top Magn Reson Imaging
.
2019
;
28
(
5
):
245
54
.
25.
Lockwood Estrin
G
,
Wu
Z
,
Deprez
M
,
Bertelsen
Á
,
Rutherford
MA
,
Counsell
SJ
, et al
.
White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures
.
Magma
.
2019
;
32
(
4
):
473
85
.
26.
Hartmann
A
,
Söffler
C
,
Failing
K
,
Schaubmar
A
,
Kramer
M
,
Schmidt
MJ
.
Diffusion-weighted magnetic resonance imaging of the normal canine brain
.
Vet Radiol Ultrasound
.
2014
;
55
(
6
):
592
8
.
27.
Lindt
B
,
Richter
H
,
Del Chicca
F
.
Investigated regional apparent diffusion coefficient values of the morphologically normal feline brain
.
J Feline Med Surg
.
2022
;
24
(
8
):
e214
22
.
28.
MacLellan
MJ
,
Ober
CP
,
Feeney
DA
,
Jessen
CR
.
Diffusion-weighted magnetic resonance imaging of the brain of neurologically normal dogs
.
Am J Vet Res
.
2017
;
78
(
5
):
601
8
.
29.
Carisch
L
,
Lindt
B
,
Richter
H
,
Del Chicca
F
.
Regional ADC values of the morphologically normal canine brain
.
Front Vet Sci
.
2023
;
10
:
1219943
.
30.
Schneider
MM
,
Berman
JI
,
Baumer
FM
,
Glass
HC
,
Jeng
S
,
Jeremy
RJ
, et al
.
Normative apparent diffusion coefficient values in the developing fetal brain
.
AJNR Am J Neuroradiol
.
2009
;
30
(
9
):
1799
803
.
31.
Fornasa
F
.
Diffusion-weighted magnetic resonance imaging: what makes water run fast or slow
.
J Clin Imaging Sci
.
2011
;
1
:
27
.
32.
Segev
M
,
Djurabayev
B
,
Katorza
E
,
Yaniv
G
,
Hoffmann
C
,
Shrot
S
.
3.0 Tesla normative diffusivity in 3rd trimester fetal brain
.
Neuroradiology
.
2022
;
64
(
6
):
1249
54
.
33.
Moraru
L
,
Dimitrievici
L
.
Apparent diffusion coefficient of the normal human brain for various experimental conditions
.
AIP Conf Proc
.
2017
;
1796
(
1
).
34.
Patel
DR
,
Neelakantan
M
,
Pandher
K
,
Merrick
J
.
Cerebral palsy in children: a clinical overview
.
Transl Pediatr
.
2020
;
9
(
Suppl 1
):
S125
35
.
35.
Lin
KR
,
Prabhu
V
,
Shah
H
,
Kamath
A
,
Joseph
B
.
Handedness in diplegic cerebral palsy
.
Dev Neurorehabil
.
2012
;
15
(
5
):
386
9
.
36.
Ariyasingha
NM
,
Chowdhury
MRH
,
Samoilenko
A
,
Salnikov
OG
,
Chukanov
NV
,
Kovtunova
LM
, et al
.
Toward lung ventilation imaging using hyperpolarized diethyl ether gas contrast agent
.
Chemistry
.
2024
;
30
(
25
):
e202304071
.
You do not currently have access to this content.