Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a “dopamine hypothesis of ASD” which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.

1.
American Psychiatric Association
.
Autism spectrum disorder, 299.00 (F84.0)
. In:
Diagnostic and statistical manual of mental disorders: DSM-5
. 5th ed.
Washington DC
:
APA
;
2013
.
2.
Bhandari
R
,
Paliwal
JK
,
Kuhad
A
.
Neuropsychopathology of autism spectrum disorder: complex interplay of genetic, epigenetic, and environmental factors
.
Adv Neurobiol
.
2020
;
24
:
97
141
. .
3.
Maenner
MJ
,
Shaw
KA
,
Baio
J
,
Washington
A
,
Patrick
M
,
DiRienzo
M
, et al
Prevalence of autism spectrum disorder among children aged 8 years: autism and developmental disabilities monitoring network, 11 Sites, United States, 2016
.
MMWR Surveill Summ
.
2020 Mar 27
;
69
(
4
):
1
12
. .
4.
Lyall
K
,
Croen
L
,
Daniels
J
,
Fallin
MD
,
Ladd-Acosta
C
,
Lee
BK
, et al
The changing epidemiology of autism spectrum disorders
.
Annu Rev Public Health
.
2017 Mar 20
;
38
:
81
102
. .
5.
Pavăl
D
.
A dopamine hypothesis of autism spectrum disorder
.
Dev Neurosci
.
2017
;
39
(
5
):
355
60
. .
6.
Lerner
TN
,
Holloway
AL
,
Seiler
JL
.
Dopamine, updated: reward prediction error and beyond
.
Curr Opin Neurobiol
.
2020 Nov 13
;
67
:
123
30
. .
7.
Sydor
A
,
Brown
R
.
Widely projecting systems: monoamines, acetylcholine, and orexin
. In:
Nestler
EJ
,
Hyman
SE
,
Malenka
RC
, editors.
Molecular neuropharmacology: a foundation for clinical neuroscience
.
New York
:
McGraw-Hill Medical
;
2020
.
Vol. 4
.
8.
Chevallier
C
,
Kohls
G
,
Troiani
V
,
Brodkin
ES
,
Schultz
RT
.
The social motivation theory of autism
.
Trends Cogn Sci
.
2012 Apr
;
16
(
4
):
231
9
. .
9.
Chain
JL
,
Alvarez
K
,
Mascaro-Blanco
A
,
Reim
S
,
Bentley
R
,
Hommer
R
, et al
Autoantibody biomarkers for basal ganglia encephalitis in sydenham chorea and pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections
.
Front Psychiatry
.
2020 Jun 24
;
11
:
564
. .
10.
Oruc
I
,
Shafai
F
,
Iarocci
G
.
Link between facial identity and expression abilities suggestive of origins of face impairments in autism: support for the social-motivation hypothesis
.
Psychol Sci
.
2018 Nov
;
29
(
11
):
1859
67
. .
11.
Itskovich
E
,
Zyga
O
,
Libove
RA
,
Phillips
JM
,
Garner
JP
,
Parker
KJ
.
Complex interplay between cognitive ability and social motivation in predicting social skill: a unique role for social motivation in children with autism
.
Autism Res
.
2021
;
14
(
1
):
86
92
.
12.
Abrams
DA
,
Padmanabhan
A
,
Chen
T
,
Odriozola
P
,
Baker
AE
,
Kochalka
J
, et al
Impaired voice processing in reward and salience circuits predicts social communication in children with autism
.
Elife
.
2019 Feb 26
;
8
:
e39906
. .
13.
Greene
RK
,
Walsh
E
,
Mosner
MG
,
Dichter
GS
.
A potential mechanistic role for neuroinflammation in reward processing impairments in autism spectrum disorder
.
Biol Psychol
.
2019 Mar
;
142
:
1
12
. .
14.
Modi
ME
,
Sahin
M
.
A unified circuit for social behavior
.
Neurobiol Learn Mem
.
2019 Nov
;
165
:
106920
. .
15.
Clements
CC
,
Zoltowski
AR
,
Yankowitz
LD
,
Yerys
BE
,
Schultz
RT
,
Herrington
JD
.
Evaluation of the social motivation hypothesis of autism: a systematic review and meta-analysis
.
JAMA Psychiatry
.
2018 Aug 1
;
75
(
8
):
797
808
. .
16.
Gale
CM
,
Eikeseth
S
,
Klintwall
L
.
Children with autism show atypical preference for non-social stimuli
.
Sci Rep
.
2019 Jul 17
;
9
(
1
):
10355
. .
17.
Kishida
KT
,
De Asis-Cruz
J
,
Treadwell-Deering
D
,
Liebenow
B
,
Beauchamp
MS
,
Montague
PR
.
Diminished single-stimulus response in vmPFC to favorite people in children diagnosed with autism spectrum disorder
.
Biol Psychol
.
2019 Jul
;
145
:
174
84
. .
18.
Supekar
K
,
Kochalka
J
,
Schaer
M
,
Wakeman
H
,
Qin
S
,
Padmanabhan
A
, et al
Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism
.
Brain
.
2018 Sep 1
;
141
(
9
):
2795
805
. .
19.
Duan
X
,
Wang
R
,
Xiao
J
,
Li
Y
,
Huang
X
,
Guo
X
, et al
Subcortical structural covariance in young children with autism spectrum disorder
.
Prog Neuropsychopharmacol Biol Psychiatry
.
2020 Apr 20
;
99
:
109874
. .
20.
Haigh
SM
,
Keller
TA
,
Minshew
NJ
,
Eack
SM
.
Reduced white matter integrity and deficits in neuropsychological functioning in adults with autism spectrum disorder
.
Autism Res
.
2020 May
;
13
(
5
):
702
14
. .
21.
Kopec
AM
,
Smith
CJ
,
Ayre
NR
,
Sweat
SC
,
Bilbo
SD
.
Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats
.
Nat Commun
.
2018 Sep 25
;
9
(
1
):
3769
. .
22.
Manduca
A
,
Servadio
M
,
Damsteegt
R
,
Campolongo
P
,
Vanderschuren
LJ
,
Trezza
V
.
Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats
.
Neuropsychopharmacology
.
2016 Aug
;
41
(
9
):
2215
23
. .
23.
Bariselli
S
,
Tzanoulinou
S
,
Glangetas
C
,
Prévost-Solié
C
,
Pucci
L
,
Viguié
J
, et al
SHANK3 controls maturation of social reward circuits in the VTA
.
Nat Neurosci
.
2016 Jul
;
19
(
7
):
926
34
. .
24.
Hung
LW
,
Neuner
S
,
Polepalli
JS
,
Beier
KT
,
Wright
M
,
Walsh
JJ
, et al
Gating of social reward by oxytocin in the ventral tegmental area
.
Science
.
2017 Sep 29
;
357
(
6358
):
1406
11
. .
25.
Beier
KT
,
Steinberg
EE
,
DeLoach
KE
,
Xie
S
,
Miyamichi
K
,
Schwarz
L
, et al
Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping
.
Cell
.
2015 Jul 30
;
162
(
3
):
622
34
. .
26.
Xiao
L
,
Priest
MF
,
Nasenbeny
J
,
Lu
T
,
Kozorovitskiy
Y
.
Biased oxytocinergic modulation of midbrain dopamine systems
.
Neuron
.
2017 Jul 19
;
95
(
2
):
368
e5
. .
27.
Hörnberg
H
,
Pérez-Garci
E
,
Schreiner
D
,
Hatstatt-Burklé
L
,
Magara
F
,
Baudouin
S
, et al
Rescue of oxytocin response and social behaviour in a mouse model of autism
.
Nature
.
2020 Aug
;
584
(
7820
):
252
6
. .
28.
Harony-Nicolas
H
,
Kay
M
,
Hoffmann
JD
,
Klein
ME
,
Bozdagi-Gunal
O
,
Riad
M
, et al
Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat
.
Elife
.
2017 Jan 31
;
6
:
e18904
. .
29.
Hara
Y
,
Ago
Y
,
Higuchi
M
,
Hasebe
S
,
Nakazawa
T
,
Hashimoto
H
, et al
Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism
.
Horm Behav
.
2017 Nov
;
96
:
130
6
. .
30.
Kohli
S
,
King
MV
,
Williams
S
,
Edwards
A
,
Ballard
TM
,
Steward
LJ
, et al
Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats
.
Neuropsychopharmacology
.
2019 Jan
;
44
(
2
):
295
305
. .
31.
Fernández
M
,
Mollinedo-Gajate
I
,
Peñagarikano
O
.
Neural circuits for social cognition: implications for autism
.
Neuroscience
.
2018 Feb 1
;
370
:
148
62
. .
32.
Freeman
SM
,
Palumbo
MC
,
Lawrence
RH
,
Smith
AL
,
Goodman
MM
,
Bales
KL
.
Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain
.
Transl Psychiatry
.
2018 Dec 4
;
8
(
1
):
257
. .
33.
Bethlehem
RAI
,
Lombardo
MV
,
Lai
MC
,
Auyeung
B
,
Crockford
SK
,
Deakin
J
, et al
Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women
.
Transl Psychiatry
.
2017 Apr 18
;
7
(
4
):
e1099
. .
34.
Kruppa
JA
,
Gossen
A
,
Oberwelland Weiß
E
,
Kohls
G
,
Großheinrich
N
,
Cholemkery
H
, et al
Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial
.
Neuropsychopharmacology
.
2019 Mar
;
44
(
4
):
749
56
. .
35.
Zhao
Z
,
Ma
X
,
Geng
Y
,
Zhao
W
,
Zhou
F
,
Wang
J
, et al
Oxytocin differentially modulates specific dorsal and ventral striatal functional connections with frontal and cerebellar regions
.
Neuroimage
.
2019 Jan 1
;
184
:
781
9
. .
36.
Ooi
YP
,
Weng
SJ
,
Kossowsky
J
,
Gerger
H
,
Sung
M
.
Oxytocin and autism spectrum disorders: a systematic review and meta-analysis of randomized controlled trials
.
Pharmacopsychiatry
.
2017 Jan
;
50
(
1
):
5
13
. .
37.
Keech
B
,
Crowe
S
,
Hocking
DR
.
Intranasal oxytocin, social cognition and neurodevelopmental disorders: a meta-analysis
.
Psychoneuroendocrinology
.
2018 Jan
;
87
:
9
19
. .
38.
Yu
Y
,
Chaulagain
A
,
Pedersen
SA
,
Lydersen
S
,
Leventhal
BL
,
Szatmari
P
, et al
Pharmacotherapy of restricted/repetitive behavior in autism spectrum disorder: a systematic review and meta-analysis
.
BMC Psychiatry
.
2020 Mar 12
;
20
(
1
):
121
. .
39.
Lawrence
KE
,
Hernandez
LM
,
Eilbott
J
,
Jack
A
,
Aylward
E
,
Gaab
N
, et al
Neural responsivity to social rewards in autistic female youth
.
Transl Psychiatry
.
2020 Jun 2
;
10
(
1
):
178
. .
40.
Hernandez
LM
,
Lawrence
KE
,
Padgaonkar
NT
,
Inada
M
,
Hoekstra
JN
,
Lowe
JK
, et al
Imaging-genetics of sex differences in ASD: distinct effects of OXTR variants on brain connectivity
.
Transl Psychiatry
.
2020 Mar 3
;
10
(
1
):
82
. .
41.
Soriano
JR
,
Daniels
N
,
Prinsen
J
,
Alaerts
K
.
Intranasal oxytocin enhances approach-related EEG frontal alpha asymmetry during engagement of direct eye contact
.
Brain Commun
.
2020 Sep 3
;
2
(
2
):
fcaa093
. .
42.
Hernandez
LM
,
Krasileva
K
,
Green
SA
,
Sherman
LE
,
Ponting
C
,
McCarron
R
, et al
Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism
.
Mol Psychiatry
.
2017 Aug
;
22
(
8
):
1134
9
. .
43.
Lewis
EM
,
Stein-O’Brien
GL
,
Patino
AV
,
Nardou
R
,
Grossman
CD
,
Brown
M
, et al
Parallel social information processing circuits are differentially impacted in autism
.
Neuron
.
2020 Nov 25
;
108
(
4
):
659
e6
. .
44.
Lee
Y
,
Kim
H
,
Han
PL
.
Striatal inhibition of MeCP2 or TSC1 produces sociability deficits and repetitive behaviors
.
Exp Neurobiol
.
2018 Dec
;
27
(
6
):
539
49
. .
45.
Lee
Y
,
Kim
H
,
Kim
JE
,
Park
JY
,
Choi
J
,
Lee
JE
, et al
Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behaviors
.
Mol Neurobiol
.
2018 Jul
;
55
(
7
):
5658
71
. .
46.
DiCarlo
GE
,
Aguilar
JI
,
Matthies
HJ
,
Harrison
FE
,
Bundschuh
KE
,
West
A
, et al
Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors
.
J Clin Invest
.
2019 May 16
;
129
(
8
):
3407
19
. .
47.
Macpherson
T
,
Morita
M
,
Hikida
T
.
Striatal direct and indirect pathways control decision-making behavior
.
Front Psychol
.
2014 Nov 12
;
5
:
1301
. .
48.
Bouchekioua
Y
,
Tsutsui-Kimura
I
,
Sano
H
,
Koizumi
M
,
Tanaka
KF
,
Yoshida
K
, et al
Striatonigral direct pathway activation is sufficient to induce repetitive behaviors
.
Neurosci Res
.
2018 Jul
;
132
:
53
7
. .
49.
Muehlmann
AM
,
Maletz
S
,
King
MA
,
Lewis
MH
.
Pharmacological targeting of striatal indirect pathway neurons improves subthalamic nucleus dysfunction and reduces repetitive behaviors in C58 mice
.
Behav Brain Res
.
2020 Aug 5
;
391
:
112708
. .
50.
Brandenburg
C
,
Soghomonian
JJ
,
Zhang
K
,
Sulkaj
I
,
Randolph
B
,
Kachadoorian
M
, et al
Increased dopamine type 2 gene expression in the dorsal striatum in individuals with autism spectrum disorder suggests alterations in indirect pathway signaling and circuitry
.
Front Cell Neurosci
.
2020 Nov 9
;
14
:
577858
. .
51.
Platt
RJ
,
Zhou
Y
,
Slaymaker
IM
,
Shetty
AS
,
Weisbach
NR
,
Kim
JA
, et al
Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits
.
Cell Rep
.
2017 Apr 11
;
19
(
2
):
335
50
. .
52.
Grabrucker
S
,
Haderspeck
JC
,
Sauer
AK
,
Kittelberger
N
,
Asoglu
H
,
Abaei
A
, et al
Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder
.
Front Mol Neurosci
.
2017 Jan 15
;
10
:
450
. .
53.
Roh
M
,
Lee
H
,
Seo
H
,
Lim
CS
,
Park
P
,
Choi
JE
, et al
Perseverative stereotypic behavior of Epac2 KO mice in a reward-based decision making task
.
Neurosci Res
.
2020 Dec
;
161
:
8
17
. .
54.
Lee
Y
,
Han
PL
.
Early-life stress in D2 heterozygous mice promotes autistic-like behaviors through the downregulation of the BDNF-TrkB pathway in the dorsal striatum
.
Exp Neurobiol
.
2019 Jun
;
28
(
3
):
337
51
. .
55.
Stephenson
JR
,
Wang
X
,
Perfitt
TL
,
Parrish
WP
,
Shonesy
BC
,
Marks
CR
, et al
A novel human CAMK2A mutation disrupts dendritic morphology and synaptic transmission, and causes ASD-related behaviors
.
J Neurosci
.
2017 Feb 22
;
37
(
8
):
2216
33
. .
56.
Frick
LR
,
Rapanelli
M
,
Jindachomthong
K
,
Grant
P
,
Leckman
JF
,
Swedo
S
, et al
Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum
.
Brain Behav Immun
.
2018 Mar
;
69
:
304
11
. .
57.
Xu
J
,
Liu
RJ
,
Fahey
S
,
Frick
L
,
Leckman
J
,
Vaccarino
F
, et al
Antibodies from children with PANDAS bind specifically to striatal cholinergic interneurons and alter their activity
.
Am J Psychiatry
.
2021 Jan 1
;
178
(
1
):
48
64
. .
58.
Lemos
JC
,
Shin
JH
,
Alvarez
VA
.
Striatal cholinergic interneurons are a novel target of corticotropin releasing factor
.
J Neurosci
.
2019 Jul 17
;
39
(
29
):
5647
61
. .
59.
Rapanelli
M
,
Frick
LR
,
Xu
M
,
Groman
SM
,
Jindachomthong
K
,
Tamamaki
N
, et al
targeted interneuron depletion in the dorsal striatum produces autism-like behavioral abnormalities in male but not female mice
.
Biol Psychiatry
.
2017 Aug 1
;
82
(
3
):
194
203
. .
60.
Bey
AL
,
Wang
X
,
Yan
H
,
Kim
N
,
Passman
RL
,
Yang
Y
, et al
Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors
.
Transl Psychiatry
.
2018 Apr 27
;
8
(
1
):
94
. .
61.
Connery
K
,
Tippett
M
,
Delhey
LM
,
Rose
S
,
Slattery
JC
,
Kahler
SG
, et al
Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism
.
Transl Psychiatry
.
2018 Aug 10
;
8
(
1
):
148
. .
62.
Fallah
MS
,
Shaikh
MR
,
Neupane
B
,
Rusiecki
D
,
Bennett
TA
,
Beyene
J
.
Atypical antipsychotics for irritability in pediatric autism: a systematic review and network meta-analysis
.
J Child Adolesc Psychopharmacol
.
2019 Apr
;
29
(
3
):
168
80
. .
63.
Anagnostou
E
.
Clinical trials in autism spectrum disorder: evidence, challenges and future directions
.
Curr Opin Neurol
.
2018 Apr
;
31
(
2
):
119
25
. .
64.
Kim
HW
,
Park
EJ
,
Kim
JH
,
Boon-Yasidhi
V
,
Tarugsa
J
,
Reyes
A
, et al
Aripiprazole for irritability in Asian children and adolescents with autistic disorder: a 12-week, multinational, multicenter, prospective Open-Label Study
.
J Child Adolesc Psychopharmacol
.
2018 Jul/Aug
;
28
(
6
):
402
8
. .
65.
Ichikawa
H
,
Hiratani
M
,
Yasuhara
A
,
Tsujii
N
,
Oshimo
T
,
Ono
H
, et al
An open-label extension long-term study of the safety and efficacy of aripiprazole for irritability in children and adolescents with autistic disorder in Japan
.
Psychiatry Clin Neurosci
.
2018 Feb
;
72
(
2
):
84
94
. .
66.
Alsayouf
HA
,
Talo
H
,
Biddappa
ML
,
Qasaymeh
M
,
Qasem
S
,
De Los Reyes
E
.
Pharmacological intervention in children with autism spectrum disorder with standard supportive therapies significantly improves core signs and symptoms: a single-center, retrospective case series
.
Neuropsychiatr Dis Treat
.
2020 Nov 16
;
16
:
2779
94
. .
67.
Ichikawa
H
,
Mikami
K
,
Okada
T
,
Yamashita
Y
,
Ishizaki
Y
,
Tomoda
A
, et al
Aripiprazole in the treatment of irritability in children and adolescents with autism spectrum disorder in Japan: a randomized, double-blind, Placebo-controlled Study
.
Child Psychiatry Hum Dev
.
2017 Oct
;
48
(
5
):
796
806
. .
68.
Channing
J
,
Mitchell
M
,
Cortese
S
.
Lurasidone in children and adolescents: systematic review and case report
.
J Child Adolesc Psychopharmacol
.
2018 Sep
;
28
(
7
):
428
36
. .
69.
Firouzabadi
N
,
Nazariat
A
,
Zomorrodian
K
.
DRD3 Ser9Gly polymorphism and its influence on risperidone response in autistic children
.
J Pharm Pharm Sci
.
2017
;
20
(
1
):
445
52
. .
70.
Richetto
J
,
Chesters
R
,
Cattaneo
A
,
Labouesse
MA
,
Gutierrez
AMC
,
Wood
TC
, et al
Genome-wide transcriptional profiling and structural magnetic resonance imaging in the maternal immune activation model of neurodevelopmental disorders
.
Cereb Cortex
.
2017 Jun 1
;
27
(
6
):
3397
413
. .
71.
Vosberg
DE
,
Zhang
Y
,
Menegaux
A
,
Chalupa
A
,
Manitt
C
,
Zehntner
S
, et al
Mesocorticolimbic connectivity and volumetric alterations in DCC mutation carriers
.
J Neurosci
.
2018 May 16
;
38
(
20
):
4655
65
. .
72.
Bariselli
S
,
Hörnberg
H
,
Prévost-Solié
C
,
Musardo
S
,
Hatstatt-Burklé
L
,
Scheiffele
P
, et al
Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction
.
Nat Commun
.
2018 Aug 9
;
9
(
1
):
3173
. .
73.
Schiavi
S
,
Iezzi
D
,
Manduca
A
,
Leone
S
,
Melancia
F
,
Carbone
C
, et al
Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid
.
Front Cell Neurosci
.
2019 Oct 25
;
13
:
479
. .
74.
Ádám
Á
,
Kemecsei
R
,
Company
V
,
Murcia-Ramón
R
,
Juarez
I
,
Gerecsei
LI
, et al
Gestational exposure to sodium valproate disrupts fasciculation of the mesotelencephalic dopaminergic tract, with a selective reduction of dopaminergic output from the ventral tegmental area
.
Front Neuroanat
.
2020 Jun 5
;
14
:
29
. .
75.
García-Domínguez
I
,
Suárez-Pereira
I
,
Santiago
M
,
Pérez-Villegas
EM
,
Bravo
L
,
López-Martín
C
, et al
Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour
.
Prog Neuropsychopharmacol Biol Psychiatry
.
2021 Jan 10
;
104
:
110030
. .
76.
Trujillo Villarreal
LA
,
Cárdenas-Tueme
M
,
Maldonado-Ruiz
R
,
Reséndez-Pérez
D
,
Camacho-Morales
A
.
Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder
.
J Neurochem
.
2021 Feb
;
156
(
4
):
415
34
.
77.
Yang
Y
,
Tian
J
,
Yang
B
.
Targeting gut microbiome: a novel and potential therapy for autism
.
Life Sci
.
2018 Feb 1
;
194
:
111
9
. .
78.
Cosi
C
,
Martel
JC
,
Auclair
AL
,
Collo
G
,
Cavalleri
L
,
Heusler
P
, et al
Pharmacology profile of F17464, a dopamine D3 receptor preferential antagonist
.
Eur J Pharmacol
.
2021 Jan 5
;
890
:
173635
. .
79.
Chao
OY
,
Pathak
SS
,
Zhang
H
,
Dunaway
N
,
Li
JS
,
Mattern
C
, et al
Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism
.
Mol Brain
.
2020 Aug 10
;
13
(
1
):
111
. .
80.
Mirza
R
,
Sharma
B
.
Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats
.
Brain Res Bull
.
2019 Apr
;
147
:
36
46
. .
81.
Scheggi
S
,
Guzzi
F
,
Braccagni
G
,
De Montis
MG
,
Parenti
M
,
Gambarana
C
.
Targeting PPARα in the rat valproic acid model of autism: focus on social motivational impairment and sex-related differences
.
Mol Autism
.
2020 Jul 27
;
11
(
1
):
62
.
82.
Kutlu
MG
,
Brady
LJ
,
Peck
EG
,
Hofford
RS
,
Yorgason
JT
,
Siciliano
CA
, et al
Granulocyte colony stimulating factor enhances reward learning through potentiation of mesolimbic dopamine system function
.
J Neurosci
.
2018 Oct 10
;
38
(
41
):
8845
59
. .
83.
Yang
Y
,
Wang
H
,
Xue
Q
,
Huang
Z
,
Wang
Y
.
High-frequency repetitive transcranial magnetic stimulation applied to the parietal cortex for low-functioning children with autism spectrum disorder: a case series
.
Front Psychiatry
.
2019 May 9
;
10
:
293
. .
84.
Park
HR
,
Kim
IH
,
Kang
H
,
Lee
DS
,
Kim
BN
,
Kim
DG
, et al
Nucleus accumbens deep brain stimulation for a patient with self-injurious behavior and autism spectrum disorder: functional and structural changes of the brain: report of a case and review of literature
.
Acta Neurochir
.
2017 Jan
;
159
(
1
):
137
43
. .
85.
Doshi
PK
,
Hegde
A
,
Desai
A
.
Nucleus accumbens deep brain stimulation for obsessive-compulsive disorder and aggression in an autistic patient: a case report and hypothesis of the role of nucleus accumbens in autism and comorbid symptoms
.
World Neurosurg
.
2019 May
;
125
:
387
91
. .
86.
Sarkar
A
,
Harty
S
,
Johnson
KV
,
Moeller
AH
,
Carmody
RN
,
Lehto
SM
, et al
The role of the microbiome in the neurobiology of social behaviour
.
Biol Rev Camb Philos Soc
.
2020 Oct
;
95
(
5
):
1131
66
. .
87.
Vasquez
A
.
Biological plausibility of the gut-brain axis in autism
.
Ann N Y Acad Sci
.
2017 Nov
;
1408
(
1
):
5
6
. .
88.
Tevzadze
G
,
Zhuravliova
E
,
Barbakadze
T
,
Shanshiashvili
L
,
Dzneladze
D
,
Nanobashvili
Z
, et al
Gut neurotoxin p-cresol induces differential expression of GLUN2B and GLUN2A subunits of the NMDA receptor in the hippocampus and nucleus accumbens in healthy and audiogenic seizure-prone rats
.
AIMS Neurosci
.
2020 Mar 10
;
7
(
1
):
30
42
. .
89.
Pascucci
T
,
Colamartino
M
,
Fiori
E
,
Sacco
R
,
Coviello
A
,
Ventura
R
, et al
P-cresol alters brain dopamine metabolism and exacerbates autism-like behaviors in the BTBR mouse
.
Brain Sci
.
2020 Apr 13
;
10
(
4
):
233
. .
90.
Li
Y
,
Luo
ZY
,
Hu
YY
,
Bi
YW
,
Yang
JM
,
Zou
WJ
, et al
The gut microbiota regulates autism-like behavior by mediating vitamin B6 homeostasis in EphB6-deficient mice
.
Microbiome
.
2020 Aug 20
;
8
(
1
):
120
. .
91.
Sgritta
M
,
Dooling
SW
,
Buffington
SA
,
Momin
EN
,
Francis
MB
,
Britton
RA
, et al
Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder
.
Neuron
.
2019 Jan 16
;
101
(
2
):
246
e6
. .
92.
DelaCuesta-Barrutia
J
,
Peñagarikano
O
,
Erdozain
AM
.
G protein-coupled receptor heteromers as putative pharmacotherapeutic targets in autism
.
Front Cell Neurosci
.
2020 Oct 30
;
14
:
588662
. .
93.
Carta
I
,
Chen
CH
,
Schott
AL
,
Dorizan
S
,
Khodakhah
K
.
Cerebellar modulation of the reward circuitry and social behavior
.
Science
.
2019 Jan 18
;
363
(
6424
):
363eaav0581
. .
94.
Baranova
J
,
Dragunas
G
,
Botellho
MCS
,
Ayub
ALP
,
Bueno-Alves
R
,
Alencar
RR
, et al
Autism spectrum disorder: signaling pathways and prospective therapeutic targets
.
Cell Mol Neurobiol
.
2020 May 28
. .
95.
Zürcher
NR
,
Walsh
EC
,
Phillips
RD
,
Cernasov
PM
,
Tseng
CJ
,
Dharanikota
A
, et al
A simultaneous [11C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism
.
Transl Psychiatry
.
2021 Jan 11
;
11
(
1
):
33
. .
96.
Kubota
M
,
Fujino
J
,
Tei
S
,
Takahata
K
,
Matsuoka
K
,
Tagai
K
, et al
Binding of dopamine D1 receptor and noradrenaline transporter in individuals with autism spectrum disorder: a PET Study
.
Cereb Cortex
.
2020 Nov 3
;
30
(
12
):
6458
68
. .
97.
Schalbroeck
R
,
van Velden
FHP
,
de Geus-Oei
LF
,
Yaqub
M
,
van Amelsvoort
T
,
Booij
J
, et al
Striatal dopamine synthesis capacity in autism spectrum disorder and its relation with social defeat: an [18F]-FDOPA PET/CT study
.
Transl Psychiatry
.
2021 Jan 13
;
11
(
1
):
47
. .
98.
Wang
M
,
Zhang
L
,
Gage
FH
.
Modeling neuropsychiatric disorders using human induced pluripotent stem cells
.
Protein Cell
.
2020 Jan
;
11
(
1
):
45
59
. .
99.
Nguyen
HTN
,
Kato
H
,
Masuda
K
,
Yamaza
H
,
Hirofuji
Y
,
Sato
H
, et al
Impaired neurite development associated with mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of children with autism spectrum disorder
.
Biochem Biophys Rep
.
2018 Sep 21
;
16
:
24
31
. .
100.
Pașca
SP
.
The rise of three-dimensional human brain cultures
.
Nature
.
2018 Jan 24
;
553
(
7689
):
437
45
. .
101.
Jo
J
,
Xiao
Y
,
Sun
AX
,
Cukuroglu
E
,
Tran
HD
,
Göke
J
, et al
Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons
.
Cell Stem Cell
.
2016 Aug 4
;
19
(
2
):
248
57
. .
102.
Jacobs
S
,
Tsien
JZ
.
Adult forebrain NMDA receptors gate social motivation and social memory
.
Neurobiol Learn Mem
.
2017 Feb
;
138
:
164
72
. .
103.
Andreou
M
,
Skrimpa
V
.
Theory of mind deficits and neurophysiological operations in autism spectrum disorders: a review
.
Brain Sci
.
2020 Jun 20
;
10
(
6
):
393
. .
104.
Robertson
CE
,
Baron-Cohen
S
.
Sensory perception in autism
.
Nat Rev Neurosci
.
2017 Nov
;
18
(
11
):
671
84
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.