In human preterm newborns, caffeine increases brain activity and improves neurodevelopmental outcomes. In animal models of hypoxic ischemic brain injury, caffeine pretreatment reduces infarct volume. We studied the relationship between tissue neuroprotection and brain activity after injury to further understand caffeine neuroprotection. Rat dams received caffeine prior to birth or on postnatal day 3 (P3) through P16. Caffeine-treated and -untreated pups underwent the Vannucci procedure (unilateral carotid ligation, global hypoxia) on P2. A subset had EEG recordings. Brain hemispheric infarct volume was measured on P16. P2 hypoxic ischemia (HI) results in histologic brain injury (mean ± standard deviation infarct volume 10.3 ± 4.6%) and transient suppression of EEG activity. Caffeine pretreatment reduces brain injury (mean ± standard deviation infarct volume 1.6 ± 4.5%, p < 0.001) and improves amplitude-integrated EEG (aEEG) and EEG burst duration and amplitude. Caffeine treatment after HI does not reduce infarct volume (mean ± standard deviation 8.3 ± 4.1%, p = 1.0). However, caffeine posttreatment was equally effective at restoring aEEG amplitude and EEG burst duration and amplitude. Thus, caffeine supports brain background electrical activity independent of tissue neuroprotection.

1.
Stoll
BJ
,
Hansen
NI
,
Bell
EF
,
Walsh
MC
,
Carlo
WA
,
Shankaran
S
, et al.;
Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network
.
Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012
.
JAMA
.
2015
Sep
;
314
(
10
):
1039
51
.
[PubMed]
0098-7484
2.
Rogers
EE
,
Hintz
SR
.
Early neurodevelopmental outcomes of extremely preterm infants
.
Semin Perinatol
.
2016
Dec
;
40
(
8
):
497
509
.
[PubMed]
0146-0005
3.
Fleiss
B
,
Gressens
P
.
Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?
Lancet Neurol
.
2012
Jun
;
11
(
6
):
556
66
.
[PubMed]
1474-4422
4.
Parikh
P
,
Juul
SE
.
Neuroprotective Strategies in Neonatal Brain Injury
.
J Pediatr
.
2018
Jan
;
192
:
22
32
.
[PubMed]
0022-3476
5.
Davis
AS
,
Berger
VK
,
Chock
VY
.
Perinatal Neuroprotection for Extremely Preterm Infants
.
Am J Perinatol
.
2016
Feb
;
33
(
3
):
290
6
.
[PubMed]
0735-1631
6.
Spitzer
NC
.
Electrical activity in early neuronal development
.
Nature
.
2006
Dec
;
444
(
7120
):
707
12
.
[PubMed]
0028-0836
7.
West
AE
,
Greenberg
ME
.
Neuronal activity-regulated gene transcription in synapse development and cognitive function
.
Cold Spring Harb Perspect Biol
.
2011
Jun
;
3
(
6
):
a005744
.
[PubMed]
1943-0264
8.
Zhang
J
,
Ackman
JB
,
Xu
HP
,
Crair
MC
.
Visual map development depends on the temporal pattern of binocular activity in mice
.
Nat Neurosci
.
2011
Nov
;
15
(
2
):
298
307
.
[PubMed]
1097-6256
9.
Chorghay
Z
,
Káradóttir
RT
,
Ruthazer
ES
.
White Matter Plasticity Keeps the Brain in Tune: Axons Conduct While Glia Wrap
.
Front Cell Neurosci
.
2018
Nov
;
12
:
428
.
[PubMed]
1662-5102
10.
Colonnese
MT
,
Kaminska
A
,
Minlebaev
M
,
Milh
M
,
Bloem
B
,
Lescure
S
, et al.
A conserved switch in sensory processing prepares developing neocortex for vision
.
Neuron
.
2010
Aug
;
67
(
3
):
480
98
.
[PubMed]
0896-6273
11.
Colonnese
MT
,
Khazipov
R
.
“Slow activity transients” in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves
.
J Neurosci
.
2010
Mar
;
30
(
12
):
4325
37
.
[PubMed]
0270-6474
12.
Benders
MJ
,
Palmu
K
,
Menache
C
,
Borradori-Tolsa
C
,
Lazeyras
F
,
Sizonenko
S
, et al.
Early Brain Activity Relates to Subsequent Brain Growth in Premature Infants.
Cereb Cortex N Y N
1991
. 2015 Sep;25(9):3014–24.
13.
Tataranno
ML
,
Claessens
NH
,
Moeskops
P
,
Toet
MC
,
Kersbergen
KJ
,
Buonocore
G
, et al.
Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants
.
Pediatr Res
.
2018
Apr
;
83
(
4
):
834
42
.
[PubMed]
0031-3998
14.
Ranasinghe
S
,
Or
G
,
Wang
EY
,
Ievins
A
,
McLean
MA
,
Niell
CM
, et al.
Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia
.
J Neurosci
.
2015
Aug
;
35
(
34
):
11946
59
.
[PubMed]
0270-6474
15.
Failor
S
,
Nguyen
V
,
Darcy
DP
,
Cang
J
,
Wendland
MF
,
Stryker
MP
, et al.
Neonatal cerebral hypoxia-ischemia impairs plasticity in rat visual cortex
.
J Neurosci
.
2010
Jan
;
30
(
1
):
81
92
.
[PubMed]
0270-6474
16.
Bona
E
,
Adén
U
,
Gilland
E
,
Fredholm
BB
,
Hagberg
H
.
Neonatal cerebral hypoxia-ischemia: the effect of adenosine receptor antagonists
.
Neuropharmacology
.
1997
Sep
;
36
(
9
):
1327
38
.
[PubMed]
0028-3908
17.
Supcun
S
,
Kutz
P
,
Pielemeier
W
,
Roll
C
.
Caffeine increases cerebral cortical activity in preterm infants
.
J Pediatr
.
2010
Mar
;
156
(
3
):
490
1
.
[PubMed]
0022-3476
18.
Schmidt
B
,
Anderson
PJ
,
Doyle
LW
,
Dewey
D
,
Grunau
RE
,
Asztalos
EV
, et al.;
Caffeine for Apnea of Prematurity (CAP) Trial Investigators
.
Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity
.
JAMA
.
2012
Jan
;
307
(
3
):
275
82
.
[PubMed]
0098-7484
19.
Towfighi
J
,
Mauger
D
,
Vannucci
RC
,
Vannucci
SJ
.
Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study
.
Brain Res Dev Brain Res
.
1997
Jun
;
100
(
2
):
149
60
.
[PubMed]
0165-3806
20.
Bona
E
,
Adén
U
,
Fredholm
BB
,
Hagberg
H
.
The effect of long term caffeine treatment on hypoxic-ischemic brain damage in the neonate
.
Pediatr Res
.
1995
Sep
;
38
(
3
):
312
8
.
[PubMed]
0031-3998
21.
Mikhailova
A
,
Sunkara
N
,
McQuillen
PS
.
Unbiased Quantification of Subplate Neuron Loss following Neonatal Hypoxia-Ischemia in a Rat Model
.
Dev Neurosci
.
2017
;
39
(
1-4
):
171
81
.
[PubMed]
0378-5866
22.
Zayachkivsky
A
,
Lehmkuhle
MJ
,
Fisher
JH
,
Ekstrand
JJ
,
Dudek
FE
.
Recording EEG in immature rats with a novel miniature telemetry system
.
J Neurophysiol
.
2013
Feb
;
109
(
3
):
900
11
.
[PubMed]
0022-3077
23.
Toet
MC
,
Hellström-Westas
L
,
Groenendaal
F
,
Eken
P
,
de Vries
LS
.
Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy
.
Arch Dis Child Fetal Neonatal Ed
.
1999
Jul
;
81
(
1
):
F19
23
.
[PubMed]
1359-2998
24.
Wikström
S
,
Pupp
IH
,
Rosén
I
,
Norman
E
,
Fellman
V
,
Ley
D
, et al.
Early single-channel aEEG/EEG predicts outcome in very preterm infants
.
Acta Paediatr
.
2012
Jul
;
101
(
7
):
719
26
.
[PubMed]
0803-5253
25.
Yang
JW
,
Reyes-Puerta
V
,
Kilb
W
,
Luhmann
HJ
.
Spindle Bursts in Neonatal Rat Cerebral Cortex
.
Neural Plast
.
2016
;
2016
:
3467832
.
[PubMed]
1687-5443
26.
Semple
BD
,
Blomgren
K
,
Gimlin
K
,
Ferriero
DM
,
Noble-Haeusslein
LJ
.
Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species
.
Prog Neurobiol
.
2013
Jul-Aug
;
106-107
:
1
16
.
[PubMed]
0301-0082
27.
Abdel-Hady
H
,
Nasef
N
,
Shabaan
AE
,
Nour
I
.
Caffeine therapy in preterm infants
.
World J Clin Pediatr
.
2015
Nov
;
4
(
4
):
81
93
.
[PubMed]
2219-2808
28.
Schmidt
B
,
Roberts
RS
,
Davis
P
,
Doyle
LW
,
Barrington
KJ
,
Ohlsson
A
, et al.;
Caffeine for Apnea of Prematurity Trial Group
.
Caffeine therapy for apnea of prematurity
.
N Engl J Med
.
2006
May
;
354
(
20
):
2112
21
.
[PubMed]
0028-4793
29.
Schmidt
B
,
Roberts
RS
,
Davis
P
,
Doyle
LW
,
Barrington
KJ
,
Ohlsson
A
, et al.;
Caffeine for Apnea of Prematurity Trial Group
.
Long-term effects of caffeine therapy for apnea of prematurity
.
N Engl J Med
.
2007
Nov
;
357
(
19
):
1893
902
.
[PubMed]
0028-4793
30.
Schmidt
B
,
Roberts
RS
,
Anderson
PJ
,
Asztalos
EV
,
Costantini
L
,
Davis
PG
, et al.;
Caffeine for Apnea of Prematurity (CAP) Trial Group
.
Academic Performance, Motor Function, and Behavior 11 Years After Neonatal Caffeine Citrate Therapy for Apnea of Prematurity: An 11-Year Follow-up of the CAP Randomized Clinical Trial
.
JAMA Pediatr
.
2017
Jun
;
171
(
6
):
564
72
.
[PubMed]
2168-6203
31.
Doyle
LW
,
Schmidt
B
,
Anderson
PJ
,
Davis
PG
,
Moddemann
D
,
Grunau
RE
, et al.;
Caffeine for Apnea of Prematurity Trial investigators
.
Reduction in developmental coordination disorder with neonatal caffeine therapy
.
J Pediatr
.
2014
Aug
;
165
(
2
):
356
359.e2
.
[PubMed]
0022-3476
32.
Doyle
LW
,
Cheong
J
,
Hunt
RW
,
Lee
KJ
,
Thompson
DK
,
Davis
PG
, et al.
Caffeine and brain development in very preterm infants
.
Ann Neurol
.
2010
Nov
;
68
(
5
):
734
42
.
[PubMed]
0364-5134
33.
McPherson
C
,
Neil
JJ
,
Tjoeng
TH
,
Pineda
R
,
Inder
TE
.
A pilot randomized trial of high-dose caffeine therapy in preterm infants
.
Pediatr Res
.
2015
Aug
;
78
(
2
):
198
204
.
[PubMed]
0031-3998
34.
Vesoulis
ZA
,
McPherson
C
,
Neil
JJ
,
Mathur
AM
,
Inder
TE
.
Early High-Dose Caffeine Increases Seizure Burden in Extremely Preterm Neonates: A Preliminary Study
.
J Caffeine Res
.
2016
Sep
;
6
(
3
):
101
7
.
[PubMed]
2156-5783
35.
Fredholm
BB
.
Adenosine and neuroprotection
.
Int Rev Neurobiol
.
1997
;
40
:
259
80
.
[PubMed]
0074-7742
36.
Turner
CP
,
Seli
M
,
Ment
L
,
Stewart
W
,
Yan
H
,
Johansson
B
, et al.
A1 adenosine receptors mediate hypoxia-induced ventriculomegaly
.
Proc Natl Acad Sci USA
.
2003
Sep
;
100
(
20
):
11718
22
.
[PubMed]
0027-8424
37.
Back
SA
,
Craig
A
,
Luo
NL
,
Ren
J
,
Akundi
RS
,
Ribeiro
I
, et al.
Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury
.
Ann Neurol
.
2006
Dec
;
60
(
6
):
696
705
.
[PubMed]
0364-5134
38.
Al Reef
T
,
Ghanem
E
.
Caffeine: well-known as psychotropic substance, but little as immunomodulator
.
Immunobiology
.
2018
Dec
;
223
(
12
):
818
25
.
[PubMed]
0171-2985
39.
Winerdal
M
,
Urmaliya
V
,
Winerdal
ME
,
Fredholm
BB
,
Winqvist
O
,
Ådén
U
.
Single Dose Caffeine Protects the Neonatal Mouse Brain against Hypoxia Ischemia
.
PLoS One
.
2017
Jan
;
12
(
1
):
e0170545
.
[PubMed]
1932-6203
40.
Khazipov
R
,
Luhmann
HJ
.
Early patterns of electrical activity in the developing cerebral cortex of humans and rodents
.
Trends Neurosci
.
2006
Jul
;
29
(
7
):
414
8
.
[PubMed]
0166-2236
41.
Ackman
JB
,
Burbridge
TJ
,
Crair
MC
.
Retinal waves coordinate patterned activity throughout the developing visual system
.
Nature
.
2012
Oct
;
490
(
7419
):
219
25
.
[PubMed]
0028-0836
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.