Introduction: The optimal method to detect impairments in cerebrovascular pressure autoregulation in neonates with hypoxic-ischemic encephalopathy (HIE) is unclear. Improving autoregulation monitoring methods would significantly advance neonatal neurocritical care. Methods: We tested several mathematical algorithms from the frequency and time domains in a piglet model of HIE, hypothermia, and hypotension. We used laser Doppler flowmetry and induced hypotension to delineate the gold standard lower limit of autoregulation (LLA). Receiver operating characteristics curve analyses were used to determine which indices could distinguish blood pressure above the LLA from that below the LLA in each piglet. Results: Phase calculation in the frequency band with maximum coherence, as well as the correlation between mean arterial pressure (MAP) and near-infrared spectroscopy relative total tissue hemoglobin (HbT) or regional oxygen saturation (rSO2), accurately discriminated functional from dysfunctional autoregulation. Neither hypoxia-ischemia nor hypothermia affected the accuracy of these indices. Coherence alone and gain had low diagnostic value relative to phase and correlation. Conclusion: Our findings indicate that phase shift is the most accurate component of autoregulation monitoring in the developing brain, and it can be measured using correlation or by calculating phase when coherence is maximal. Phase and correlation autoregulation indices from MAP and rSO2 and vasoreactivity indices from MAP and HbT are accurate metrics that are suitable for clinical HIE studies.

1.
Massaro
AN
,
Govindan
RB
,
Vezina
G
,
Chang
T
,
Andescavage
NN
,
Wang
Y
, et al.
Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia
.
J Neurophysiol
.
2015
Aug
;
114
(
2
):
818
24
.
[PubMed]
0022-3077
2.
Tekes
A
,
Poretti
A
,
Scheurkogel
MM
,
Huisman
TA
,
Howlett
JA
,
Alqahtani
E
, et al.
Apparent diffusion coefficient scalars correlate with near-infrared spectroscopy markers of cerebrovascular autoregulation in neonates cooled for perinatal hypoxic-ischemic injury
.
AJNR Am J Neuroradiol
.
2015
Jan
;
36
(
1
):
188
93
.
[PubMed]
0195-6108
3.
Burton
VJ
,
Gerner
G
,
Cristofalo
E
, et al.
A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol.
2015
; 15:209-015-0464-4.
4.
Lee
JK
,
Poretti
A
,
Perin
J
,
Huisman
TA
,
Parkinson
C
,
Chavez-Valdez
R
, et al.
Optimizing cerebral autoregulation may decrease neonatal regional hypoxic-ischemic brain injury
.
Dev Neurosci
.
2017
;
39
(
1-4
):
248
56
.
[PubMed]
0378-5866
5.
Tian
F
,
Tarumi
T
,
Liu
H
,
Zhang
R
,
Chalak
L
.
Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy
.
Neuroimage Clin
.
2016
Jan
;
11
:
124
32
.
[PubMed]
2213-1582
6.
Lee
JK
,
Kibler
KK
,
Benni
PB
,
Easley
RB
,
Czosnyka
M
,
Smielewski
P
, et al.
Cerebrovascular reactivity measured by near-infrared spectroscopy
.
Stroke
.
2009
May
;
40
(
5
):
1820
6
.
[PubMed]
0039-2499
7.
Edwards
AD
,
Wyatt
JS
,
Richardson
C
,
Delpy
DT
,
Cope
M
,
Reynolds
EO
.
Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy
.
Lancet
.
1988
Oct
;
2
(
8614
):
770
1
.
[PubMed]
0140-6736
8.
Soul
JS
,
du Plessis
AJ
.
New technologies in pediatric neurology. Near-infrared spectroscopy
.
Semin Pediatr Neurol
.
1999
Jun
;
6
(
2
):
101
10
.
[PubMed]
1071-9091
9.
Lee
JK
,
Yang
ZJ
,
Wang
B
,
Larson
AC
,
Jamrogowicz
JL
,
Kulikowicz
E
, et al.
Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest
.
Anesth Analg
.
2012
Apr
;
114
(
4
):
825
36
.
[PubMed]
0003-2999
10.
Larson
AC
,
Jamrogowicz
JL
,
Kulikowicz
E
,
Wang
B
,
Yang
ZJ
,
Shaffner
DH
, et al.
Cerebrovascular autoregulation after rewarming from hypothermia in a neonatal swine model of asphyxic brain injury
.
J Appl Physiol (1985)
.
2013
Nov
;
115
(
10
):
1433
42
.
[PubMed]
1522-1601
11.
Lee
JK
,
Brady
KM
,
Mytar
JO
,
Kibler
KK
,
Carter
EL
,
Hirsch
KG
, et al.
Cerebral blood flow and cerebrovascular autoregulation in a swine model of pediatric cardiac arrest and hypothermia
.
Crit Care Med
.
2011
Oct
;
39
(
10
):
2337
45
.
[PubMed]
0090-3493
12.
Tsuji
M
,
duPlessis
A
,
Taylor
G
,
Crocker
R
,
Volpe
JJ
.
Near infrared spectroscopy detects cerebral ischemia during hypotension in piglets
.
Pediatr Res
.
1998
Oct
;
44
(
4
):
591
5
.
[PubMed]
0031-3998
13.
Soul
JS
,
Hammer
PE
,
Tsuji
M
,
Saul
JP
,
Bassan
H
,
Limperopoulos
C
, et al.
Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants
.
Pediatr Res
.
2007
Apr
;
61
(
4
):
467
73
.
[PubMed]
0031-3998
14.
O’Leary
H
,
Gregas
MC
,
Limperopoulos
C
,
Zaretskaya
I
,
Bassan
H
,
Soul
JS
, et al.
Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage
.
Pediatrics
.
2009
Jul
;
124
(
1
):
302
9
.
[PubMed]
0031-4005
15.
Brady
KM
,
Lee
JK
,
Kibler
KK
,
Smielewski
P
,
Czosnyka
M
,
Easley
RB
, et al.
Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy
.
Stroke
.
2007
Oct
;
38
(
10
):
2818
25
.
[PubMed]
0039-2499
16.
Santos
PT
,
O'Brien
CE
,
Chen
MW
, et al.
Proteasome biology is compromised in white matter after asphyxic cardiac arrest in neonatal piglets
[{LT}][{GT}].
2018
.
17.
Bisschops
LL
,
Hoedemaekers
CW
,
Mollnes
TE
,
van der Hoeven
JG
.
Rewarming after hypothermia after cardiac arrest shifts the inflammatory balance
.
Crit Care Med
.
2011
.
[PubMed]
0090-3493
18.
Wang
B
,
Armstrong
JS
,
Reyes
M
,
Kulikowicz
E
,
Lee
JH
,
Spicer
D
, et al.
White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy
.
Neuroscience
.
2016
Mar
;
316
:
296
310
.
[PubMed]
0306-4522
19.
O’Brien
CE
,
Santos
PT
,
Kulikowicz
E
, et al.
Hypoxia-ischemia and hypothermia independently and interactively affect neuronal pathology in neonatal piglets with short-term recovery
.
Dev Neurosci
. Forthcoming
2019
.0378-5866
20.
Easley
RB
,
Jennings
J
,
Kibler
K
,
Brady
KM
,
Serratos
B
,
Andropoulos
DB
, et al.
Cerebrovascular Autoregulation Impairment is Associated with Elevations in Plasma Glial Fibrillary Acidic Protein during Congenital Heart Surgery (Abstracts from the American Heart Association’s Emerging Science Series, April 25, 2012)
.
Circulation
.
2012
;
•••
:
3
.0009-7322
21.
Soehle
M
,
Chatfield
DA
,
Czosnyka
M
,
Kirkpatrick
PJ
.
Predictive value of initial clinical status, intracranial pressure and transcranial Doppler pulsatility after subarachnoid haemorrhage
.
Acta Neurochir (Wien)
.
2007
Jun
;
149
(
6
):
575
83
.
[PubMed]
0001-6268
22.
Zeiler
FA
,
Cardim
D
,
Donnelly
J
,
Menon
DK
,
Czosnyka
M
,
Smielewski
P
.
Transcranial doppler systolic flow index and ICP-derived cerebrovascular reactivity indices in traumatic brain injury
.
J Neurotrauma
.
2018
Jan
;
35
(
2
):
314
22
.
[PubMed]
0897-7151
23.
Aries
MJ
,
Czosnyka
M
,
Budohoski
KP
,
Kolias
AG
,
Radolovich
DK
,
Lavinio
A
, et al.
Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure
.
Neurocrit Care
.
2012
Aug
;
17
(
1
):
67
76
.
[PubMed]
1541-6933
24.
Brady
KM
,
Shaffner
DH
,
Lee
JK
,
Easley
RB
,
Smielewski
P
,
Czosnyka
M
, et al.
Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children
.
Pediatrics
.
2009
Dec
;
124
(
6
):
e1205
12
.
[PubMed]
0031-4005
25.
Fraser
CD
 3rd
,
Brady
KM
,
Rhee
CJ
,
Easley
RB
,
Kibler
K
,
Smielewski
P
, et al.
The frequency response of cerebral autoregulation
.
J Appl Physiol (1985)
.
2013
Jul
;
115
(
1
):
52
6
.
[PubMed]
1522-1601
26.
Brady
K
,
Joshi
B
,
Zweifel
C
,
Smielewski
P
,
Czosnyka
M
,
Easley
RB
, et al.
Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass
.
Stroke
.
2010
Sep
;
41
(
9
):
1951
6
.
[PubMed]
0039-2499
27.
Barbieri
R
,
Triedman
JK
,
Saul
JP
.
Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis
.
Am J Physiol Regul Integr Comp Physiol
.
2002
Nov
;
283
(
5
):
R1210
20
.
[PubMed]
0363-6119
28.
Halliday
DM
,
Rosenberg
JR
,
Amjad
AM
,
Breeze
P
,
Conway
BA
,
Farmer
SF
.
A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms
.
Prog Biophys Mol Biol
.
1995
;
64
(
2-3
):
237
78
.
[PubMed]
0079-6107
29.
Timmer
J
,
Lauk
M
,
Pfleger
W
,
Deuschl
G
.
Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram
.
Biol Cybern
.
1998
May
;
78
(
5
):
349
57
.
[PubMed]
0340-1200
30.
Kay
SM
.
Modern Spectral Estimation: Theory and Application
.
New Jersey
:
Prentice Hall
;
1998
.
31.
Wyller
VB
,
Barbieri
R
,
Saul
JP
.
Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress
.
Eur J Appl Physiol
.
2011
Mar
;
111
(
3
):
497
507
.
[PubMed]
1439-6319
32.
Akaike
H
.
A new look at the statistical model identification
.
IEEE Trans Automat Contr
.
1974
;
19
(
6
):
716
23
. 0018-9286
33.
Liu
X
,
Czosnyka
M
,
Donnelly
J
,
Cardim
D
,
Cabeleira
M
,
Hutchinson
PJ
, et al.
Wavelet pressure reactivity index: a validation study
.
J Physiol
.
2018
Jul
;
596
(
14
):
2797
809
.
[PubMed]
0022-3751
34.
DiCiccio
TJ
,
Efron
B
,
Hall
P
,
Martin
MA
,
Canty
AJ
,
Davison
AC
, et al.
Bootstrap confidence intervals
.
Stat Sci
.
1996
;
11
(
3
):
189
228
. 0883-4237
35.
Hall
P
,
Wilson
SR
.
Two guidelines for bootstrap hypothesis testing
.
Biometrics
.
1991
;
47
(
2
):
757
62
. 0006-341X
36.
Mandrekar
JN
.
Receiver operating characteristic curve in diagnostic test assessment
.
J Thorac Oncol
.
2010
Sep
;
5
(
9
):
1315
6
.
[PubMed]
1556-0864
37.
Benjamini
Y
,
Hochberg
Y
.
Controlling the false discovery rate: A practical and powerful approach to multiple testing
.
J R Stat Soc B
.
1995
;
57
(
1
):
289
300
. 0035-9246
38.
Hahn
GH
,
Heiring
C
,
Pryds
O
,
Greisen
G
.
Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets
.
Pediatr Res
.
2011
Aug
;
70
(
2
):
166
70
.
[PubMed]
0031-3998
39.
Eriksen
VR
,
Hahn
GH
,
Greisen
G
.
Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses
.
J Biomed Opt
.
2015
Mar
;
20
(
3
):
037009
.
[PubMed]
1083-3668
40.
Joshi
B
,
Brady
K
,
Lee
J
,
Easley
B
,
Panigrahi
R
,
Smielewski
P
, et al.
Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke
.
Anesth Analg
.
2010
Feb
;
110
(
2
):
321
8
.
[PubMed]
0003-2999
41.
Lavinio
A
,
Timofeev
I
,
Nortje
J
,
Outtrim
J
,
Smielewski
P
,
Gupta
A
, et al.
Cerebrovascular reactivity during hypothermia and rewarming
.
Br J Anaesth
.
2007
Aug
;
99
(
2
):
237
44
.
[PubMed]
0007-0912
42.
Ueda
Y
,
Suehiro
E
,
Wei
EP
,
Kontos
HA
,
Povlishock
JT
.
Uncomplicated rapid posthypothermic rewarming alters cerebrovascular responsiveness
.
Stroke
.
2004
Feb
;
35
(
2
):
601
6
.
[PubMed]
0039-2499
43.
Howlett
JA
,
Northington
FJ
,
Gilmore
MM
,
Tekes
A
,
Huisman
TA
,
Parkinson
C
, et al.
Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy
.
Pediatr Res
.
2013
Nov
;
74
(
5
):
525
35
.
[PubMed]
0031-3998
44.
Aksenov
D
,
Eassa
JE
,
Lakhoo
J
,
Wyrwicz
A
,
Linsenmeier
RA
.
Effect of isoflurane on brain tissue oxygen tension and cerebral autoregulation in rabbits
.
Neurosci Lett
.
2012
Aug
;
524
(
2
):
116
8
.
[PubMed]
0304-3940
45.
Chalak
LF
,
Zhang
R
.
New wavelet neurovascular bundle for bedside evaluation of cerebral autoregulation and neurovascular coupling in newborns with hypoxic-ischemic encephalopathy
.
Dev Neurosci
.
2017
;
39
(
1-4
):
89
96
.
[PubMed]
0378-5866
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.