Precise temporal and spatial control of the neural stem/progenitor cells within the subventricular zone (SVZ) germinal matrix of the brain is important for normal development in the third trimester and the early postnatal period. The high metabolic demands of proliferating germinal matrix precursors, coupled with the flimsy structure of the germinal matrix cerebral vasculature, are thought to account for the high rates of haemorrhage in extremely- and very-low-birth-weight preterm infants. Germinal matrix haemorrhage can commonly extend to intraventricular haemorrhage (IVH). Because neural stem/progenitor cells are sensitive to microenvironmental cues from the ventricular, intermediate, and basal domains within the germinal matrix, haemorrhage has been postulated to impact neurological outcomes through aberration of normal neural stem/progenitor cell behaviour. We developed an animal model of neonatal germinal matrix haemorrhage using stereotactic injection of autologous blood into the mouse neonatal germinal matrix. Pathological analysis at 4 days postinjury showed high rates of intraventricular extension and ventricular dilatation but low rates of parenchymal disruption outside the germinal zone, recapitulating key features of human “Papile grade III” IVH. At 4 days postinjury we observed proliferation in the wall of the lateral ventricle with significantly increased numbers of transient amplifying cells within the SVZ and the corpus callosum. Analysis at 21 days postinjury revealed that cortical development was also affected, with increased neuronal and concomitant reduced oligodendroglial differentiation. At the molecular level, we showed downregulation of the expression of the transmembrane receptor Notch2 in CD133+ve cells of the SVZ, raising the possibility that the burst of precocious proliferation seen in our experimental mouse model and the skewed differentiation could be mediated by downregulation of the Notch pathway within the proximal/ventricular domain. These findings raise the possibility that Notch regulation plays a critical role in mediating the response of the neonatal SVZ to ischaemic and haemorrhagic insults.

1.
Chang HH, Larson J, Blencowe H, Spong CY, Howson CP, Cairns-Smith S, Lackritz EM, Lee SK, Mason E, Serazin AC: Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. Lancet 2013;381:223-234.
2.
Goldenberg RL, Culhane JF, Iams JD, Romero R: Epidemiology and causes of preterm birth. Lancet 2008;371:75-84.
3.
Ballabh P: Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res 2010;67:1-8.
4.
Back SA: Brain injury in the preterm infant: new horizons for pathogenesis and prevention. Pediatr Neurol 2015;53:185-192.
5.
Fleiss B, Gressens P: Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? Lancet Neurol 2012;11:556-566.
6.
Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA: Neurodevelopment and predictors of outcomes of children with birth weights of less than 1,000 g: 1992-1995. Arch Pediatr Adolesc Med 2000;154:725-731.
7.
Vohr BR, Wright LL, Poole WK, McDonald SA: Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks' gestation between 1993 and 1998. Pediatrics 2005;116:635-643.
8.
Wood N, Costeloe K, Gibson A, Hennessy E, Marlow N, Wilkinson A: The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed 2005;90:F134-F140.
9.
Tong CK, Alvarez-Buylla A: SnapShot: adult neurogenesis in the V-SVZ. Neuron 2014;81:220-220 e221.
10.
Fuentealba LC, Obernier K, Alvarez-Buylla A: Adult neural stem cells bridge their niche. Cell Stem Cell 2012;10:698-708.
11.
Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D'Ercole AJ, Wong ET, LaMantia AS, Walsh CA: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011;69:893-905.
12.
Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A: Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000;28:713-726.
13.
Kopan R, Ilagan MXG: The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009;137:216-233.
14.
Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R: Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 2010;30:3489-3498.
15.
Liu X, Wang Q, Haydar TF, Bordey A: Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 2005;8:1179-1187.
16.
Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004;304:1338-1340.
17.
Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A: Corridors of migrating neurons in the human brain and their decline during infancy. Nature 2011;478:382-386.
18.
Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, Sandoval K, Rowitch DH, Xu D, McQuillen PS: Extensive migration of young neurons into the infant human frontal lobe. Science 2016;354:aaf7073.
19.
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J: Neurogenesis in the striatum of the adult human brain. Cell 2014;156:1072-1083.
20.
Kriegstein A, Alvarez-Buylla A: The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009;32:149-184.
21.
Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A: Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006;26:7907-7918.
22.
Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC: Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 2001;21:1302-1312.
23.
Volpe JJ: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110-124.
24.
Aquilina K, Chakkarapani E, Love S, Thoresen M: Neonatal rat model of intraventricular haemorrhage and post-haemorrhagic ventricular dilatation with long-term survival into adulthood. Neuropathol Appl Neurobiol 2011;37:156-165.
25.
Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, Altay O, Tang J, Zhang JH: Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol 2012;236:69-78.
26.
Xue M, Balasubramaniam J, Buist RJ, Peeling J, Del Bigio MR: Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol 2003;62:1154-1165.
27.
Alles YC, Greggio S, Alles RM, Azevedo PN, Xavier LL, DaCosta JC: A novel preclinical rodent model of collagenase-induced germinal matrix/intraventricular hemorrhage. Brain Res 2010;1356:130-138.
28.
Merkle FT, Mirzadeh Z, Alvarez-Buylla A: Mosaic organization of neural stem cells in the adult brain. Science 2007;317:381-384.
29.
Inta D, Alfonso J, von Engelhardt J, Kreuzberg MM, Meyer AH, van Hooft JA, Monyer H: Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci USA 2008;105:20994-20999.
30.
Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA: CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 2007;67:5727-5736.
31.
Bolos V, Grego-Bessa J, de la Pompa JL: Notch signaling in development and cancer. Endocr Rev 2007;28:339-363.
32.
Muzio L, Soria J, Pannese M, Piccolo S, Mallamaci A: A mutually stimulating loop involving emx2 and canonical wnt signalling specifically promotes expansion of occipital cortex and hippocampus. Cereb Cortex 2005;15:2021-2028.
33.
Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R: Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 2011;14:1009-1016.
34.
Suzuki SO, Goldman JE: Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci 2003;23:4240-4250.
35.
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, DeLeo AM, Pastrana E, Doetsch F: Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 2014;82:545-559.
36.
Olausson KH, Maire CL, Haidar S, Ling J, Learner E, Nistér M, Ligon KL: Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS One 2014;9:e106694.
37.
Brouwer A, Groenendaal F, van Haastert IL, Rademaker K, Hanlo P, de Vries L: Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 2008;152:648-654.
38.
Bassan H, Limperopoulos C, Visconti K, Mayer DL, Feldman HA, Avery L, Benson CB, Stewart J, Ringer SA, Soul JS, Volpe JJ, du Plessis AJ: Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 2007;120:785-792.
39.
Papile L-A, Burstein J, Burstein R, Koffler H: Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529-534.
40.
Whitelaw A: Periventricular hemorrhage: a problem still today. Early Hum Dev 2012;88:965-969.
41.
Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M: Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 2006;149:169-173.
42.
O'shea TM, Allred EN, Kuban KCK, Hirtz D, Specter B, Durfee S, Paneth N, Leviton A, Investigators ES: Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J Child Neurol 2012;27:22-29.
43.
Inder TE: Neurodevelopmental impact of low-grade intraventricular hemorrhage in very preterm infants. J Pediatr 2006;149:152-154.
44.
Molnár Z, Rutherford M: Brain maturation after preterm birth. Sci Transl Med 2013;5:168ps162.
45.
Dean JM, McClendon E, Hansen K, Azimi-Zonooz A, Chen K, Riddle A, Gong X, Sharifnia E, Hagen M, Ahmad T: Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci Transl Med 2013;5:168ra167-168ra167.
46.
Dubois J, Benders M, Cachia A, Lazeyras F, Leuchter RH-V, Sizonenko S, Borradori-Tolsa C, Mangin J, Hüppi PS: Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 2008;18:1444-1454.
47.
Toft PB, Leth H, Ring PB, Peitersen B, Lou HC, Henriksen O: Volumetric analysis of the normal infant brain and in intrauterine growth retardation. Early Hum Dev 1995;43:15-29.
48.
Tolsa CB, Zimine S, Warfield SK, Freschi M, Rossignol AS, Lazeyras F, Hanquinet S, Pfizenmaier M, Hüppi PS: Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 2004;56:132-138.
49.
Jary S, De Carli A, Ramenghi LA, Whitelaw A: Impaired brain growth and neurodevelopment in preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 2012;101:743-748.
50.
Balasubramaniam J, Del Bigio MR: Animal models of germinal matrix hemorrhage. J Child Neurol 2006;21:365-371.
51.
Balasubramaniam J, Xue M, Buist RJ, Ivanco TL, Natuik S, Del Bigio MR: Persistent motor deficit following infusion of autologous blood into the periventricular region of neonatal rats. Exp Neurol 2006;197:122-132.
52.
Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Sherbany AA, Hyder F, Ballabh P: Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke 2009;40:3369-3377.
53.
Whitelaw A, Christie S, Pople I: Transforming growth factor-beta1: a possible signal molecule for posthemorrhagic hydrocephalus? Pediatr Res 1999;46:576-580.
54.
Traudt CM, McPherson RJ, Studholme C, Millen KJ, Juul SE: Systemic glycerol decreases neonatal rabbit brain and cerebellar growth independent of intraventricular hemorrhage. Pediatr Res 2014;75:389-394.
55.
McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, Rubin K, Shani M, Dvorak HF, Wolburg H, Bader BL: Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking αv integrins. Mol Cell Biol 2002;22:7667-7677.
56.
Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, Aguglia U, van der Knaap MS, Heutink P, John SW: Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:1167-1171.
57.
Lindahl P, Johansson BR, Levéen P, Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997;277:242-245.
58.
Yang D, Baumann JM, Sun Y-Y, Tang M, Dunn RS, Akeson AL, Kernie SG, Kallapur S, Lindquist DM, Huang EJ: Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage. Sci Transl Med 2013;5:193ra190-193ra190.
59.
Fagel DM, Ganat Y, Silbereis J, Ebbitt T, Stewart W, Zhang H, Ment LR, Vaccarino FM: Cortical neurogenesis enhanced by chronic perinatal hypoxia. Exp Neurol 2006;199:77-91.
60.
Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisen J: Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 2009;12:259-267.
61.
Ortega F, Gascón S, Masserdotti G, Deshpande A, Simon C, Fischer J, Dimou L, Lie DC, Schroeder T, Berninger B: Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 2013;15:602-613.
62.
Zhou Q, Choi G, Anderson DJ: The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2. 2. Neuron 2001;31:791-807.
63.
Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P: Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA 2007;104:20558-20563.
64.
Lobry C, Ntziachristos P, Ndiaye-Lobry D, Oh P, Cimmino L, Zhu N, Araldi E, Hu W, Freund J, Abdel-Wahab O: Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med 2013;210:301-319.
65.
Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, Akers LJ, Hammitt RA, McMurray JS, Kornblau SM: Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med 2013;210:321-337.
You do not currently have access to this content.