Acute exposure to subclinical infection modulates subsequent hypoxia-ischemia (HI) injury in a time-dependent manner, likely by cross-talk through Toll-like receptors (TLRs), but the specific pathways are unclear in the preterm-equivalent brain. In the present study, we tested the hypothesis that repeated low-dose exposure to lipopolysaccharide (LPS) before acute ischemia would be associated with induction of specific TLRs that are potentially neuroprotective. Fetal sheep at 0.65 gestation (term is ∼145 days) received intravenous boluses of low-dose LPS for 5 days (day 1, 50 ng/kg; days 2-5, 100 ng/kg) or the same volume of saline. Either 4 or 24 h after the last bolus of LPS, complete carotid occlusion was induced for 22 min. Five days after LPS, brains were collected. Pretreatment with LPS for 5 days decreased cellular apoptosis, microglial activation and reactive astrogliosis in response to HI injury induced 24 but not 4 h after the last dose of LPS. This was associated with upregulation of TLR4, TLR7 and IFN-β mRNA, and increased fetal plasma IFN-β concentrations. The association of reduced white matter apoptosis and astrogliosis after repeated low-dose LPS finishing 24 h but not 4 h before cerebral ischemia, with central and peripheral induction of IFN-β, suggests the possibility that IFN-β may be an important mediator of endogenous neuroprotection in the developing brain.

1.
Committee on Understanding Premature Birth and Assuring Healthy Outcomes; in Behrman RE, Butler AS (eds): Preterm Birth: Causes, Consequences, and Prevention. Washington, Institute of Medicine of the National Academies, 2007, http://books.nap.edu//catalog/11622.html#toc.
2.
Shatrov JG, Birch SC, Lam LT, Quinlivan JA, McIntyre S, Mendz GL: Chorioamnionitis and cerebral palsy: a meta-analysis. Obstet Gynecol 2010;116:387-392.
3.
Hatfield T, Wing DA, Buss C, Head K, Muftuler LT, Davis EP: Magnetic resonance imaging demonstrates long-term changes in brain structure in children born preterm and exposed to chorioamnionitis. Am J Obstet Gynecol 2011;205:027.
4.
Dean JM, Shi Z, Fleiss B, Gunn KC, Groenendaal F, van Bel F, Derrick M, Juul SE, Tan S, Gressens P, Mallard C, Bennet L, Gunn AJ: A Critical Review of Models of Perinatal Infection. Dev Neurosci 2015;37:289-304.
5.
Farrelly L, Focking M, Piontkewitz Y, Dicker P, English J, Wynne K, Cannon M, Cagney G, Cotter DR: Maternal immune activation induces changes in myelin and metabolic proteins, some of which can be prevented with risperidone in adolescence. Dev Neurosci 2015;37:43-55.
6.
Li WY, Chang YC, Lee LJ: Prenatal infection affects the neuronal architecture and cognitive function in adult mice. Dev Neurosci 2014;36:359-370.
7.
Balakrishnan B, Dai H, Janisse J, Romero R, Kannan S: Maternal endotoxin exposure results in abnormal neuronal architecture in the newborn rabbit. Dev Neurosci 2013;35:396-405.
8.
Rousset CI, Kassem J, Aubert A, Planchenault D, Gressens P, Chalon S, Belzung C, Saliba E: Maternal exposure to lipopolysaccharide leads to transient motor dysfunction in neonatal rats. Dev Neurosci 2013;35:172-181.
9.
Malaeb SN, Davis JM, Pinz IM, Newman JL, Dammann O, Rios M: Effect of sustained postnatal systemic inflammation on hippocampal volume and function in mice. Pediatr Res 2014;76:363-369.
10.
Helderman JB, O'Shea TM, Kuban KC, Allred EN, Hecht JL, Dammann O, Paneth N, McElrath TF, Onderdonk A, Leviton A: Antenatal antecedents of cognitive impairment at 24 months in extremely low gestational age newborns. Pediatrics 2012;129:494-502.
11.
O'Shea TM, Allred EN, Kuban KC, Dammann O, Paneth N, Fichorova R, Hirtz D, Leviton A: Elevated concentrations of inflammation-related proteins in postnatal blood predict severe developmental delay at 2 years of age in extremely preterm infants. J Pediatr 2012;160:395-401.
12.
Leviton A, Fichorova RN, O'Shea TM, Kuban K, Paneth N, Dammann O, Allred EN: Two-hit model of brain damage in the very preterm newborn: small for gestational age and postnatal systemic inflammation. Pediatr Res 2013;73:362-370.
13.
Lin HY, Huang CC, Chang KF: Lipopolysaccharide preconditioning reduces neuroinflammation against hypoxic ischemia and provides long-term outcome of neuroprotection in neonatal rat. Pediatr Res 2009;66:254-259.
14.
Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H: Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur J Neurosci 2001;13:1101-1106.
15.
Yang L, Sameshima H, Ikeda T, Ikenoue T: Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 2004;30:142-147.
16.
Ikeda T, Mishima K, Aoo N, Egashira N, Iwasaki K, Fujiwara M, Ikenoue T: Combination treatment of neonatal rats with hypoxia-ischemia and endotoxin induces long-lasting memory and learning impairment that is associated with extended cerebral damage. Am J Obstet Gynecol 2004;191:2132-2141.
17.
Wang LW, Chang YC, Lin CY, Hong JS, Huang CC: Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 2010;68:41-47.
18.
Eklind S, Mallard C, Arvidsson P, Hagberg H: Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 2005;58:112-116.
19.
Leviton A, Allred EN, Kuban KC, Hecht JL, Onderdonk AB, O'Shea T M, Paneth N: Microbiologic and histologic characteristics of the extremely preterm infant's placenta predict white matter damage and later cerebral palsy: the ELGAN study. Pediatr Res 2010;67:95-101.
20.
Dammann O, Leviton A: Intermittent or sustained systemic inflammation and the preterm brain. Pediatr Res 2014;75:376-380.
21.
Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, Higgins RD: Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004;292:2357-2365.
22.
Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP: Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 2009;158:1007-1020.
23.
Hanke ML, Kielian T: Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011;121:367-387.
24.
Hickey E, Shi H, Van Arsdell G, Askalan R: Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in Toll-like receptor 4 expression in the rat developing brain. Pediatr Res 2011;70:10-14.
25.
Mallard C, Wang X, Hagberg H: The role of Toll-like receptors in perinatal brain injury. Clin Perinatol 2009;36:763-772, v-vi.
26.
Mallard C, Wang X: Infection-induced vulnerability of perinatal brain injury. Neurol Res Int 2012;2012:102153.
27.
Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP: Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 2009;29:9839-9849.
28.
Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, Stenzel-Poore MP: Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 2011;31:8456-8463.
29.
Kariko K, Weissman D, Welsh FA: Inhibition of Toll-like receptor and cytokine signaling - a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 2004;24:1288-1304.
30.
Stenzel-Poore MP, Stevens SL, King JS, Simon RP: Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 2007;38:680-685.
31.
Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 2009;109:287-294.
32.
Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, Lessov NS, Simon RP, Stenzel-Poore MP: Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 2008;28:1040-1047.
33.
Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP: Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 2007;27:1663-1674.
34.
Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, van den Dungen NN, Simon RP, Stenzel-Poore MP: Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke 2012;43:1383-1389.
35.
Kaul D, Habbel P, Derkow K, Kruger C, Franzoni E, Wulczyn FG, Bereswill S, Nitsch R, Schott E, Veh R, Naumann T, Lehnardt S: Expression of Toll-like receptors in the developing brain. PloS One 2012;7:e37767.
36.
McIntosh GH, Baghurst KI, Potter BJ, Hetzel BS: Foetal brain development in the sheep. Neuropathol Appl Neurobiol 1979;5:103-114.
37.
Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ: Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000;106:625-632.
38.
Greisen G: To autoregulate or not to autoregulate - that is no longer the question. Semin Pediatr Neurol 2009;16:207-215.
39.
Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, Disalvo DN, Moore M, Akins P, Ringer S, Volpe JJ, Trachtenberg F, du Plessis AJ: Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 2007;61:467-473.
40.
Khwaja O, Volpe JJ: Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 2008;93:F153-F161.
41.
Davidson JO, Yuill CA, Wassink G, Bennet L, Gunn AJ: Spontaneous pre-existing hypoxia does not affect brain damage after global cerebral ischaemia in late-gestation fetal sheep. Dev Neurosci 2015;37:56-65.
42.
Fraser M, Bennet L, Gunning M, Williams C, Gluckman PD, George S, Gunn AJ: Cortical electroencephalogram suppression is associated with post-ischemic cortical injury in 0.65 gestation fetal sheep. Brain Res Dev Brain Res 2005;154:45-55.
43.
Fraser M, Bennet L, Helliwell R, Wells S, Williams C, Gluckman P, Gunn AJ, Inder T: Regional specificity of magnetic resonance imaging and histopathology following cerebral ischemia in preterm fetal sheep. Reprod Sci 2007;14:182-191.
44.
Plaisier A, Govaert P, Lequin MH, Dudink J: Optimal timing of cerebral MRI in preterm infants to predict long-term neurodevelopmental outcome: a systematic review. AJNR Am J Neuroradiol 2014;35:841-847.
45.
Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ: Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143:171-179.
46.
Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA: Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112:1-7.
47.
Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, Perez M, Mukherjee P, Vigneron DB, Barkovich AJ: Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 2005;147:609-616.
48.
Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N: Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 2009;3:5.
49.
Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003;339:62-66.
50.
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol Lett 2004;26:509-515.
51.
Weaver-Mikaere L, Gunn AJ, Mitchell MD, Bennet L, Fraser M: LPS and TNF alpha modulate AMPA/NMDA receptor subunit expression and induce PGE2 and glutamate release in preterm fetal ovine mixed glial cultures. J Neuroinflamm 2013;10:153.
52.
Weaver-Mikaere L, Gunn AJ, Bennet L, Mitchell MD, Fraser M: Inhibition of matrix metalloproteinases-2/-9 transiently reduces pre-oligodendrocyte loss during lipopolysaccharide- but not tumour necrosis factor-alpha-induced inflammation in fetal ovine glial culture. Dev Neurosci 2013;35:461-473.
53.
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001;25:402-408.
54.
Kwong LS, Hope JC, Thom ML, Sopp P, Duggan S, Bembridge GP, Howard CJ: Development of an ELISA for bovine IL-10. Vet Immunol Immunopathol 2002;85:213-223.
55.
Wattegedera S, Rocchi M, Sales J, Howard CJ, Hope JC, Entrican G: Antigen-specific peripheral immune responses are unaltered during normal pregnancy in sheep. J Reprod Immunol 2008;77:171-178.
56.
Yanowitz TD, Jordan JA, Gilmour CH, Towbin R, Bowen A, Roberts JM, Brozanski BS: Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 2002;51:310-316.
57.
Kaukola T, Herva R, Perhomaa M, Paakko E, Kingsmore S, Vainionpaa L, Hallman M: Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 2006;59:478-483.
58.
Wang X, Hagberg H, Nie C, Zhu C, Ikeda T, Mallard C: Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J Neuropathol Exp Neurol 2007;66:552-561.
59.
Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G: Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 2009;158:673-682.
60.
Fukuda S, Yokoi K, Kitajima K, Tsunoda Y, Hayashi N, Shimizu S, Yoshida T, Hamajima N, Watanabe I, Goto H: Influence of premature rupture of membrane on the cerebral blood flow in low-birth-weight infant after the delivery. Brain Dev 2010;32:631-635.
61.
Low JA, Froese AF, Galbraith RS, Sauerbrei EE, McKinven JP, Karchmar EJ: The association of fetal and newborn metabolic acidosis with severe periventricular leukomalacia in the preterm newborn. Am J Obstet Gynecol 1990;162:977-981, discussion 981-972.
62.
Low JA, Galbraith RS, Muir DW, Killen HL, Pater EA, Karchmar EJ: Mortality and morbidity after intrapartum asphyxia in the preterm fetus. Obstet Gynecol 1992;80:57-61.
63.
Riddle A, Luo NL, Manese M, Beardsley DJ, Green L, Rorvik DA, Kelly KA, Barlow CH, Kelly JJ, Hohimer AR, Back SA: Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 2006;26:3045-3055.
64.
Riddle A, Dean J, Buser JR, Gong X, Maire J, Chen K, Ahmad T, Cai V, Nguyen T, Kroenke CD, Hohimer AR, Back SA: Histopathological correlates of magnetic resonance imaging-defined chronic perinatal white matter injury. Ann Neurol 2011;70:493-507.
65.
Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A, Struve J, Sherman LS, Back SA: Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 2008;63:520-530.
66.
Eklind S, Hagberg H, Wang X, Savman K, Leverin AL, Hedtjarn M, Mallard C: Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res 2006;60:161-168.
67.
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y: Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014;114:58-83.
68.
Van den Heuij LG, Mathai S, Davidson JO, Lear CA, Booth LC, Fraser M, Gunn AJ, Bennet L: Synergistic white matter protection with acute-on-chronic endotoxin and subsequent asphyxia in preterm fetal sheep. J Neuroinflamm 2014;11:89.
69.
Gage AT, Stanton PK: Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor. Brain Res 1996;719:172-178.
70.
Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB: Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002;22:6401-6407.
71.
Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC: Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 2000;863:169-181.
72.
Nishio S, Yunoki M, Chen ZF, Anzivino MJ, Lee KS: Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 2000;93:845-851.
73.
Bordet R, Deplanque D, Maboudou P, Puisieux F, Pu Q, Robin E, Martin A, Bastide M, Leys D, Lhermitte M, Dupuis B: Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance. J Cereb Blood Flow Metab 2000;20:1190-1196.
74.
Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ: Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 1998;29:1937-1950.
75.
Lin HY, Wu CL, Huang CC: The Akt-endothelial nitric oxide synthase pathway in lipopolysaccharide preconditioning-induced hypoxic-ischemic tolerance in the neonatal rat brain. Stroke 2010;41:1543-1551.
76.
Gao Y, Fang X, Tong Y, Liu Y, Zhang B: TLR4-mediated MyD88-dependent signaling pathway is activated by cerebral ischemia-reperfusion in cortex in mice. Biomed Pharmacother 2009;63:442-450.
77.
Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ: Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 2007;353:509-514.
78.
Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G: TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 2007;359:574-579.
79.
Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, Schepers J, Vos IM, Dijkstra CD, Kappelle LJ, Nicolay K, Bar PR: Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 2003;23:1029-1039.
80.
Hua F, Wang J, Sayeed I, Ishrat T, Atif F, Stein DG: The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice. Biochem Biophys Res Commun 2009;390:678-683.
81.
Honda K, Takaoka A, Taniguchi T: Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006;25:349-360.
82.
Mogensen TH: Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22:240-273,.
83.
Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, Salazar AM, Colonna M, Steinman RM: Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 2009;206:1589-1602.
84.
Kawai T, Akira S: TLR signaling. Semin Immunol 2007;19:24-32.
85.
Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T: IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005;434:772-777.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.