This study aimed to investigate whether the administration of mononuclear cells derived from human umbilical cord blood cells (UCBCs) could ameliorate hypoxic-ischemic brain injury in a neonatal rat model. The left carotid arteries of 7-day-old rats were ligated, and the rats were then exposed to 8% oxygen for 60 min. Mononuclear cells derived from UCBCs using the Ficoll-Hypaque technique were injected intraperitoneally 6 h after the insult (1.0 × 107 cells). Twenty-four hours after the insult, the number of cells positive for the oxidative stress markers 4-hydroxy-2-nonenal and nitrotyrosine, in the dentate gyrus of the hippocampus in the UCBC-treated group, decreased by 36 and 42%, respectively, compared with those in the control group. In addition, the number of cells positive for the apoptosis markers active caspase-3 and apoptosis-inducing factor decreased by 53 and 58%, respectively. The number of activated microglia (ED1-positive cells) was 51% lower in the UCBC group compared with the control group. In a gait analysis performed 2 weeks after the insult, there were no significant differences among the sham-operated, control and UCBC groups. An active avoidance test using a shuttle box the following week also revealed no significant differences among the groups. Neither the volumes of the hippocampi, corpus callosum and cortices nor the numbers of neurons in the hippocampus were different between the UCBC and control groups. In summary, a single intraperitoneal injection of UCBC-derived mononuclear cells 6 h after an ischemic insult was associated with a transient reduction in numbers of apoptosis and oxidative stress marker-positive cells, but it did not induce long-term morphological or functional protection. Repeated administration or a combination treatment may be required to achieve sustained protection.

1.
Lawn JE, Cousens S, Zupan J: 4 million neonatal deaths: when? Where? Why? Lancet 2005;365:891-900.
[PubMed]
2.
Kurinczuk JJ, White-Koning M, Badawi N: Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010;86:329-338.
[PubMed]
3.
Askalan R, Wang C, Shi H, Armstrong E, Yager JY: The effect of postischemic hypothermia on apoptotic cell death in the neonatal rat brain. Dev Neurosci 2011;33:320-329.
[PubMed]
4.
Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P: Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009;361:1349-1358.
[PubMed]
5.
Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ: Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365:663-670.
[PubMed]
6.
Sato Y, Oohira A: Chondroitin sulfate, a major niche substance of neural stem cells, and cell transplantation therapy of neurodegeneration combined with niche modification. Curr Stem Cell Res Ther 2009;4:200-209.
[PubMed]
7.
Lindvall O, Kokaia Z: Stem cells for the treatment of neurological disorders. Nature 2006;441:1094-1096.
[PubMed]
8.
Sato Y, Nakanishi K, Hayakawa M, Kakizawa H, Saito A, Kuroda Y, Ida M, Tokita Y, Aono S, Matsui F, Kojima S, Oohira A: Reduction of brain injury in neonatal hypoxic-ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together with chondroitinase ABC. Reprod Sci 2008;15:613-620.
[PubMed]
9.
Sato Y, Shinjyo N, Sato M, Osato K, Zhu C, Pekna M, Kuhn HG, Blomgren K: Grafting of neural stem and progenitor cells to the hippocampus of young, irradiated mice causes gliosis and disrupts the granule cell layer. Cell Death Dis 2013;4:e591.
[PubMed]
10.
Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001;32:2682-2688.
[PubMed]
11.
Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR: Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: Distribution, migration, and differentiation. J Hematother Stem Cell Res 2003;12:255-270.
[PubMed]
12.
Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A: Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 2006;59:244-249.
[PubMed]
13.
Pimentel-Coelho PM, Magalhaes ES, Lopes LM, de Azevedo LC, Santiago MF, Mendez-Otero R: Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 2010;19:351-358.
[PubMed]
14.
Wasielewski B, Jensen A, Roth-Harer A, Dermietzel R, Meier C: Neuroglial activation and CX43 expression are reduced upon transplantation of human umbilical cord blood cells after perinatal hypoxic-ischemic injury. Brain Res 2012;1487:39-53.
[PubMed]
15.
De Paula S, Greggio S, Marinowic DR, Machado DC, Da Costa JC: The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia. Neuroscience 2012;210:431-441.
[PubMed]
16.
Geissler M, Dinse HR, Neuhoff S, Kreikemeier K, Meier C: Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS One 2011;6:e20194.
[PubMed]
17.
Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, Meier C: Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res 2012;348:429-438.
[PubMed]
18.
Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV: Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 2010;14:914-921.
[PubMed]
19.
Rice JE 3rd, Vannucci RC, Brierley JB: The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-141.
[PubMed]
20.
Osato K, Sato Y, Ochiishi T, Osato A, Zhu C, Sato M, Swanpalmer J, Modjtahedi N, Kroemer G, Kuhn HG, Blomgren K: Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation. Cell Death Dis 2010;1:e84.
[PubMed]
21.
Paxinous G, Watson C: The Rat Brain in Stereotaxic Coordinates, ed 2. San Diego, Academic Press, 1986.
22.
Encarnacion A, Horie N, Keren-Gill H, Bliss TM, Steinberg GK, Shamloo M: Long-term behavioral assessment of function in an experimental model for ischemic stroke. J Neurosci Methods 2011;196:247-257.
[PubMed]
23.
Ichinohashi Y, Sato Y, Saito A, Ito M, Watanabe K, Hayakawa M, Nakanishi K, Wakatsuki A, Oohira A: Dexamethasone administration to the neonatal rat results in neurological dysfunction at the juvenile stage even at low doses. Early Hum Dev 2013;89:283-288.
[PubMed]
24.
Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS: Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 2003;184:313-325.
[PubMed]
25.
Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, Iwamoto Y, Nakamura M, Miyoshi H, Okano HJ, Contag CH, Toyama Y, Okano H: In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 2005;19:1839-1841.
[PubMed]
26.
Rosenblum S, Wang N, Smith TN, Pendharkar AV, Chua JY, Birk H, Guzman R: Timing of intra-arterial neural stem cell transplantation after hypoxia-ischemia influences cell engraftment, survival, and differentiation. Stroke 2012;43:1624-1631.
[PubMed]
27.
Uemura M, Kasahara Y, Nagatsuka K, Taguchi A: Cell-based therapy to promote angiogenesis in the brain following ischemic damage. Curr Vasc Pharmacol 2012;10:285-288.
[PubMed]
28.
Liao Y, Cotten M, Tan S, Kurtzberg J, Cairo MS: Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant 2013;48:890-900.
[PubMed]
29.
Lorek A, Takei Y, Cady EB, Wyatt JS, Penrice J, Edwards AD, Peebles D, Wylezinska M, Owen-Reece H, Kirkbride V, et al: Delayed (‘secondary') cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994;36:699-706.
[PubMed]
30.
Van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ: Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci 2010;30:9603-9611.
[PubMed]
31.
Rosenkranz K, Tenbusch M, May C, Marcus K, Meier C: Changes in interleukin-1 alpha serum levels after transplantation of umbilical cord blood cells in a model of perinatal hypoxic-ischemic brain damage. Ann Anat 2013;195:122-127.
[PubMed]
32.
Warner DS, Sheng H, Batinic-Haberle I: Oxidants, antioxidants and the ischemic brain. J Exp Biol 2004;207:3221-3231.
[PubMed]
33.
Arien-Zakay H, Lecht S, Bercu MM, Tabakman R, Kohen R, Galski H, Nagler A, Lazarovici P: Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp Neurol 2009;216:83-94.
[PubMed]
34.
Ohtaki H, Takaki A, Yin L, Dohi K, Nakamachi T, Matsunaga M, Horai R, Asano M, Iwakura Y, Shioda S: Suppression of oxidative stress after transient focal ischemia in interleukin-1 knock out mice. Acta Neurochir Suppl 2003;86:191-194.
[PubMed]
35.
De Paula S, Vitola AS, Greggio S, de Paula D, Mello PB, Lubianca JM, Xavier LL, Fiori HH, Dacosta JC: Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells. Pediatr Res 2009;65:631-635.
[PubMed]
36.
Yager JY, Wright S, Armstrong EA, Jahraus CM, Saucier DM: The influence of aging on recovery following ischemic brain damage. Behav Brain Res 2006;173:171-180.
[PubMed]
37.
Tsuji M, Taguchi A, Ohshima M, Kasahara Y, Sato Y, Tsuda H, Otani K, Yamahara K, Ihara M, Harada-Shiba M, Ikeda T, Matsuyama T: Effects of intravenous administration of umbilical cord blood CD34 cells in a mouse model of neonatal stroke. Neuroscience 2014;263C:148-158.
[PubMed]
38.
Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR: Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol 2006;199:201-208.
[PubMed]
39.
Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR: Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003;12:271-278.
[PubMed]
40.
DeBow SB, Clark DL, MacLellan CL, Colbourne F: Incomplete assessment of experimental cytoprotectants in rodent ischemia studies. Can J Neurol Sci 2003;30:368-374.
[PubMed]
41.
Fan CG, Zhang QJ, Tang FW, Han ZB, Wang GS, Han ZC: Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett 2005;380:322-325.
[PubMed]
42.
Bonestroo HJ, Nijboer CH, van Velthoven CT, Kavelaars A, Hack CE, van Bel F, Heijnen CJ: Cerebral and hepatic inflammatory response after neonatal hypoxia-ischemia in newborn rats. Dev Neurosci 2013;35:197-211.
[PubMed]
43.
Walker PA, Shah SK, Jimenez F, Gerber MH, Xue H, Cutrone R, Hamilton JA, Mays RW, Deans R, Pati S, Dash PK, Cox CS Jr: Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: preserving the blood brain barrier via an interaction with splenocytes. Exp Neurol 2010;225:341-352.
[PubMed]
You do not currently have access to this content.