We hypothesized that creatine (Cr) supplementation would preserve energy metabolism and thus ameliorate the energy failure and the extent of brain edema seen after severe but transient cerebral hypoxia-ischemia (HI) in the neonatal rat model. Six-day-old (P6) rats received subcutaneous Cr monohydrate injections for 3 consecutive days (3 g/kg body weight/day), followed by 31P-magnetic resonance spectroscopy (MRS) at P9. In a second group, P4 rats received the same Cr dose as above for 3 days prior to unilateral common carotid artery ligation followed 1 h later by 100 min of hypoxia (8% O2) at P7. Rats were maintained at 37°C rectal temperature until magnetic resonance imaging was performed 24 h after HI. Cr supplementation for 3 days significantly increased the energy potential, i.e. the ratio of phosphocreatine to β-nucleotide triphosphate (PCr/βNTP) and PCr/inorganic phosphate (PCr/Pi) as measured by 31P-MRS. Rats with hemispheric cerebral hypoxic-ischemic insult that had received Cr showed a significant reduction (25%) of the volume of edemic brain tissue compared with controls as calculated from diffusion-weighted images (DWI). Thus, prophylactic Cr supplementation demonstrated a significant neuroprotective effect 24 h after transient cerebral HI. We hypothesize that neuroprotection is probably due to the availability of a larger metabolic substrate pool leading to a reduction of the secondary energy failure because DWI has been reported to correlate with the PCr/Pi ratio in the acute phase of injury. Additional protection by Cr may be related to prevention of calcium overload, prevention of mitochondrial permeability transition pore opening and direct antioxidant effects.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.