Rat striatal N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate (KA) receptor staining were evaluated postnatally in the rat. Immunohistochemistry was used to detect subunit proteins of the three glutamate receptor subtypes. The glutamate receptors displayed distinct developmental expression patterns in the striatum. Morphological distributions for the NMDA R1 subunit (representative of NMDA receptors), Glu R1 and Glu R2/3 subunits (indicative of AMPA receptors), and Glu R5/6/7 subunits (demonstrating KA receptors) attained adult expression patterns and levels at different postnatal time points. The ontogenic maturation sequence of striatal glutamate receptor expression was KA, then AMPA and lastly NMDA. Staining patterns for NMDA and AMPA subunit proteins were detected initially as dense patches in the neuropil, which changed to a homogeneous stain of the striatum by the second week of life. Cellular staining for the three subtypes was intense within the highly reactive neuropil patches, but less intensely stained in neurons located outside these zones. The KA receptor subunit did not exhibit neuropil heterogeneity, but was distributed evenly at birth. All three glutamate receptor subtypes were visible within the striatal neuron populations. Populations of striatal neurons that expressed the three differential glutamate receptor subtypes overlap, exhibit different growth patterns and dendritic staining. These results support a functional emergence of different glutamate receptor activation within the striatum and provide a potential therapeutic means to isolate developmental disorders specifically associated with excitatory circuits of the basal ganglia.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.