The adrenal glucocorticoids and catecholamines comprise a frontline of defense for mammalian species under conditions which threaten homeostasis (conditions commonly referred to as stress). Glucocorticoids represent the end product of the hypothalamic-pituitary-adrenal (HPA) axis and along with the catecholamines serve to mobilize the production and distribution of energy substrates during stress. The increased secretion of pituitary-adrenal hormones in response to stress is stimulated by the release of corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) from neurons in the nucleus paraventricularis. In this way, a neural signal associated with the stressor is transduced into a set of endocrine and sympathetic responses. The development of the HPA response to stressful stimuli is altered by early environmental events. Animals exposed to short periods of infantile stimulation or handling show decreased HPA responsivity to stress, whereas maternal separation, physical trauma and endotoxin administration enhance HPA responsivity to stress. In all cases, these effects persist throughout the life of the animal and are accompanied by increased hypothalamic levels of the mRNAs for CRH and often AVP. The inhibitory regulation of the synthesis for these ACTH releasing factors is achieved, in part, through a negative feedback loop whereby circulating glucocorticoids act at various neural sites to decrease CRH and AVP gene expression. Such inhibitory effects are initiated via an interaction between the adrenal steroid and an intracellular receptor (either the mineralocorticoid or glucocorticoid receptor). We have found that these early environmental manipulations regulate glucocorticoid receptor gene expression in the hippocampus and frontal cortex, regions that have been strongly implicated as sites for negative-feedback regulation of CRH and AVP synthesis. When the differences in glucocorticoid receptor density are transiently reversed, so too are those in HPA responses to stress. Taken together, our findings indicate that the early postnatal environment alters the differentiation of hippocampal neurons. This effect involves an altered rate of glucocorticoid receptor gene expression, resulting in changes in the sensitivity of the system to the inhibitory effects of glucocorticoids on the synthesis of CRH and AVP in hypothalamic neurons. Changes in CRH and AVP levels, in turn, determine the responsivity of the axis to subsequent stressors; increased releasing factor production is associated with increased HPA responses to stress. Thus, the early environment can contribute substantially to the development of stable individual differences in HPA responsivity to stressful stimuli. These data provide examples of early environmental programming of neural systems. One major objective of our research is to understand how such programming occurs within the brain.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.