The metabolic capability for the complete oxidation of glucose, i.e. aerobic glycolysis, is highly developed in the brains of neurologically mature (precocial) species at birth, whereas this activity is severely limited in the brains of neurologically immature (non-precocial) species such as the rat and human. The latter utilize a mixture of glucose and ketone bodies for synthetic and energetic activities and the advent of neurological competence associated with the capability for complete dependence on and oxidation of glucose must await the development of key enzymes such as the pyruvate dehydrogenase complex (PDHC). A similar relationship appears to exist with respect to the development of neurological maturity of different brain regions in a single species, the rat. The development of the enzymes of energy metabolism of neonatal rat brain will be discussed with respect to the energy fuels available to the neonatal brain. In particular mechanisms by which the PDHC develops in neonatal brain will be evaluated. Evidence suggests that this is due to a specific increase in enzyme protein in contrast to a general increase in mitochondrial activity.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.