Introduction: High-fat diets (HFDs) are known to affect the gut microbiome structure and potentially promote the development and metastasis of colorectal cancer (CRC). This study aims to elucidate the molecular mechanisms through which gut microbiome dysbiosis, mediated by the propionate/GPR41 signaling pathway, promotes lymphangiogenesis and lymph node (LN) metastasis in CRC, providing new insights for CRC treatment. Methods: Microbial diversity and composition in rectal cancer were compared between CRC patients and healthy controls using 16S rRNA sequencing. Key genes related to short-chain fatty acid metabolism, HFD, and gut microbiota were identified. In vitro assays assessed CRC cell proliferation, migration, invasion, and lymphangiogenesis. A CRC mouse model on an HFD was used to measure fecal propionate levels and analyze GPR41 expression in tumors. In vivo fluorescence imaging was employed to track cancer cell migration and lymph node metastasis. Results: HFD-induced microbial dysbiosis led to a significant reduction in SCFA-producing bacteria and an increase in proinflammatory species. This dysbiosis contributed to the suppression of propionate’s protective effects. Propionate inhibited CRC cell proliferation, migration, and invasion under HFD conditions by activating the GPR41 pathway. Silencing GPR41 reversed these inhibitory effects, highlighting the key role of GPR41 in mediating propionate’s antitumor effects. In vivo experiments further confirmed that propionate suppressed HFD-enhanced CRC lymphatic metastasis through the GPR41 signaling pathway, linking microbial dysbiosis with the modulation of cancer progression. Conclusion: This study reveals that HFD promotes CRC lymphangiogenesis and LN metastasis through gut microbiota dysbiosis and suppression of the propionate-activated GPR41 signaling pathway. These findings highlight the therapeutic potential of targeting the propionate/GPR41 axis, offering a promising strategy for developing novel anticancer therapies.

1.
Chen
M
,
Tian
B
,
Hu
G
,
Guo
Y
.
METTL3-Modulated circUHRF2 promotes colorectal cancer stemness and metastasis through increasing DDX27 mRNA stability by recruiting IGF2BP1
.
Cancers
.
2023
;
15
(
12
):
3148
.
2.
Zhao
G
,
Wang
Q
,
Zhang
Y
,
Gu
R
,
Liu
M
,
Li
Q
, et al
.
DDX17 induces epithelial-mesenchymal transition and metastasis through the miR-149-3p/CYBRD1 pathway in colorectal cancer
.
Cell Death Dis
.
2023
;
14
(
1
):
1
.
3.
Elrebehy
MA
,
Al-Saeed
S
,
Gamal
S
,
El-Sayed
A
,
Ahmed
AA
,
Waheed
O
, et al
.
miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: a spotlight on signaling pathways interplay — a review
.
Int J Biol Macromol
.
2022
;
214
:
583
600
.
4.
Vernia
F
,
Longo
S
,
Stefanelli
G
,
Viscido
A
,
Latella
G
.
Dietary factors modulating colorectal carcinogenesis
.
Nutrients
.
2021
;
13
(
1
):
143
.
5.
Lewandowska
A
,
Rudzki
G
,
Lewandowski
T
,
Stryjkowska-Góra
A
,
Rudzki
S
.
Risk factors for the diagnosis of colorectal cancer
.
Cancer Control
.
2022
;
29
:
10732748211056692
.
6.
Song
H
,
Sontz
RA
,
Vance
MJ
,
Morris
JM
,
Sheriff
S
,
Zhu
S
, et al
.
High-fat diet plus HNF1A variant promotes polyps by activating β-catenin in early-onset colorectal cancer
.
JCI Insight
.
2023
;
8
(
13
):
e167163
.
7.
Yang
J
,
Wei
H
,
Zhou
Y
,
Szeto
C-H
,
Li
C
,
Lin
Y
, et al
.
High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites
.
Gastroenterology
.
2022
;
162
(
1
):
135
49.e2
.
8.
Wang
Z
,
Kim
SY
,
Tu
W
,
Kim
J
,
Xu
A
,
Yang
YM
, et al
.
Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment
.
Cell Metab
.
2023
;
35
(
7
):
1209
26.e13
.
9.
Tamraz
M
,
Al Ghossaini
N
,
Temraz
S
.
The ketogenic diet in colorectal cancer: a means to an end
.
IJMS
.
2023
;
24
(
4
):
3683
.
10.
Góralczyk-Bińkowska
A
,
Szmajda-Krygier
D
,
Kozłowska
E
.
The microbiota–gut–brain Axis in psychiatric disorders
.
IJMS
.
2022
;
23
(
19
):
11245
.
11.
Chen
Y
,
Zhou
J
,
Wang
L
.
Role and mechanism of gut microbiota in human disease
.
Front Cell Infect Microbiol
.
2021
;
11
:
625913
.
12.
Tilg
H
,
Adolph
TE
,
Trauner
M
.
Gut-liver axis: pathophysiological concepts and clinical implications
.
Cell Metab
.
2022
;
34
(
11
):
1700
18
.
13.
Pan
W
,
Zhao
J
,
Wu
J
,
Xu
D
,
Meng
X
,
Jiang
P
, et al
.
Dimethyl itaconate ameliorates cognitive impairment induced by a high-fat diet via the gut-brain axis in mice
.
Microbiome
.
2023
;
11
(
1
):
30
.
14.
Suriano
F
,
Nyström
EEL
,
Sergi
D
,
Gustafsson
JK
.
Diet, microbiota, and the mucus layer: the guardians of our health
.
Front Immunol
.
2022
;
13
:
953196
.
15.
Huang
X
,
Cao
Q
,
Chen
C
,
Xie
Z
,
Fan
J
.
Beneficial effects of fermented barley extracts on inflammatory status and gut microbiota in high-fat diet-induced obese rats
.
J Appl Microbiol
.
2022
;
133
(
6
):
3708
18
.
16.
Quaglio
AEV
,
Grillo
TG
,
Oliveira
ECSD
,
Stasi
LCD
,
Sassaki
LY
.
Gut microbiota, inflammatory bowel disease and colorectal cancer
.
WJG
.
2022
;
28
(
30
):
4053
60
.
17.
Cai
K
,
Cao
X-Y
,
Chen
F
,
Zhu
Y
,
Sun
D-D
,
Cheng
H-B
, et al
.
Xianlian Jiedu Decoction alleviates colorectal cancer by regulating metabolic profiles, intestinal microbiota and metabolites
.
Phytomedicine
.
2024
;
128
:
155385
.
18.
Hou
G
,
Yin
J
,
Wei
L
,
Li
R
,
Peng
W
,
Yuan
Y
, et al
.
Lactobacillus delbrueckii might lower serum triglyceride levels via colonic microbiota modulation and SCFA-mediated fat metabolism in parenteral tissues of growing-finishing pigs
.
Front Vet Sci
.
2022
;
9
:
982349
.
19.
Kim
S
,
Shin
Y-C
,
Kim
T-Y
,
Kim
Y
,
Lee
Y-S
,
Lee
S-H
, et al
.
Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development
.
Gut Microbes
.
2021
;
13
(
1
):
1
20
.
20.
Wu
Y
,
Zhang
X
,
Han
D
,
Pi
Y
,
Tao
S
,
Zhang
S
, et al
.
Early life administration of milk fat globule membrane promoted SCFA-producing bacteria colonization, intestinal barriers and growth performance of neonatal piglets
.
Anim Nutr
.
2021
;
7
(
2
):
346
55
.
21.
Jia
D
,
Wang
Q
,
Qi
Y
,
Jiang
Y
,
He
J
,
Lin
Y
, et al
.
Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer
.
Cell
.
2024
;
187
(
7
):
1651
65.e21
.
22.
Gao
R
,
Wu
C
,
Zhu
Y
,
Kong
C
,
Zhu
Y
,
Gao
Y
, et al
.
Integrated analysis of colorectal cancer reveals cross-cohort gut microbial signatures and associated serum metabolites
.
Gastroenterology
.
2022
;
163
(
4
):
1024
37.e9
.
23.
Huang
F
,
Li
S
,
Chen
W
,
Han
Y
,
Yao
Y
,
Yang
L
, et al
.
Postoperative probiotics administration attenuates gastrointestinal complications and gut microbiota dysbiosis caused by chemotherapy in colorectal cancer patients
.
Nutrients
.
2023
;
15
(
2
):
356
.
24.
Xia
W
,
Khan
I
,
Li
X
,
Huang
G
,
Yu
Z
,
Leong
WK
, et al
.
Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses
.
Pharmacol Res
.
2020
;
159
:
104809
.
25.
Yao
H
,
Wang
S
,
Zhou
X
,
Sun
J
,
Zhou
G
,
Zhou
D
, et al
.
STING promotes proliferation and induces drug resistance in colorectal cancer by regulating the AMPK-mTOR pathway
.
J Gastrointest Oncol
.
2022
;
13
(
5
):
2458
71
.
26.
Kappert
L
,
Ruzicka
P
,
Kutikhin
A
,
De La Torre
C
,
Fischer
A
,
Hecker
M
, et al
.
Loss of Nfat5 promotes lipid accumulation in vascular smooth muscle cells
.
FASEB J
.
2021
;
35
(
9
):
e21831
.
27.
Wu
C
,
Wang
M
,
Shi
H
.
Cholesterol promotes colorectal cancer growth by activating the PI3K/AKT pathway
.
J Oncol
.
2022
;
2022
:
1515416
7
.
28.
Zhao
D
,
Cai
C
,
Chen
Q
,
Jin
S
,
Yang
B
,
Li
N
.
High-fat diet promotes DSS-induced ulcerative colitis by downregulated FXR expression through the TGFB pathway
.
BioMed Res Int
.
2020
;
2020
(
1
):
3516128
.
29.
Chen
L
,
Zhou
X
,
Wang
Y
,
Wang
D
,
Ke
Y
,
Zeng
X
.
Propionate and butyrate produced by gut microbiota after probiotic supplementation attenuate lung metastasis of melanoma cells in mice
.
Mol Nutr Food Res
.
2021
;
65
(
15
):
e2100096
.
30.
Wan
P
,
Bai
X
,
Yang
C
,
He
T
,
Luo
L
,
Wang
Y
, et al
.
miR‐129‐5p inhibits proliferation, migration, and invasion in rectal adenocarcinoma cells through targeting E2F7
.
J Cell Physiol
.
2020
;
235
(
7–8
):
5689
701
.
31.
Zhang
C
,
Zhang
Y
,
Liang
M
,
Shi
X
,
Jun
Y
,
Fan
L
, et al
.
Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases
.
Front Immunol
.
2022
;
13
:
1063678
.
32.
Yoo
J
,
Groer
M
,
Dutra
S
,
Sarkar
A
,
McSkimming
D
.
Gut microbiota and immune system interactions
.
Microorganisms
.
2020
;
8
(
10
):
1587
.
33.
Park
CH
,
Eun
CS
,
Han
DS
.
Intestinal microbiota, chronic inflammation, and colorectal cancer
.
Intest Res
.
2018
;
16
(
3
):
338
45
.
34.
Li
Y
,
Huang
Y
,
Liang
H
,
Wang
W
,
Li
B
,
Liu
T
, et al
.
The roles and applications of short-chain fatty acids derived from microbial fermentation of dietary fibers in human cancer
.
Front Nutr
.
2023
;
10
.
35.
Cheng
Y
,
Ling
Z
,
Li
L
.
The intestinal microbiota and colorectal cancer
.
Front Immunol
.
2020
;
11
.
36.
Zhuang
C
,
Liu
Y
,
Gu
R
,
Du
S
,
Long
Y
.
Prognostic signature of colorectal cancer based on uric acid-related genes
.
Heliyon
.
2023
;
9
(
12
):
e22587
.
37.
Chen
L
,
Dai
P
,
Liu
L
,
Chen
Y
,
Lu
Y
,
Zheng
L
, et al
.
The lipid-metabolism enzyme ECI2 reduces neutrophil extracellular traps formation for colorectal cancer suppression
.
Nat Commun
.
2024
;
15
(
1
):
7184
.
38.
Hou
H
,
Chen
D
,
Zhang
K
,
Zhang
W
,
Liu
T
,
Wang
S
, et al
.
Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation
.
Cancer Lett
.
2022
;
526
:
225
35
.
39.
Ocvirk
S
,
O’Keefe
SJD
.
Dietary fat, bile acid metabolism and colorectal cancer
.
Semin Cancer Biol
.
2021
;
73
:
347
55
.
40.
Moniri
NH
,
Farah
Q
.
Short-chain free-fatty acid G protein-coupled receptors in colon cancer
.
Biochem Pharmacol
.
2021
;
186
:
114483
.
41.
Sivaprakasam
S
,
Prasad
PD
,
Singh
N
.
Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis
.
Pharmacol Ther
.
2016
;
164
:
144
51
.
42.
Wong
CC
,
Yu
J
.
Gut microbiota in colorectal cancer development and therapy
.
Nat Rev Clin Oncol
.
2023
;
20
(
7
):
429
52
.
43.
Gou
H
,
Su
H
,
Liu
D
,
Wong
CC
,
Shang
H
,
Fang
Y
, et al
.
Traditional medicine pien tze huang suppresses colorectal tumorigenesis through restoring gut microbiota and metabolites
.
Gastroenterology
.
2023
;
165
(
6
):
1404
19
.
44.
Zhang
Q
,
Zhao
Q
,
Li
T
,
Lu
L
,
Wang
F
,
Zhang
H
, et al
.
Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity
.
Cell Metab
.
2023
;
35
(
6
):
943
60.e9
.
45.
Bell
HN
,
Rebernick
RJ
,
Goyert
J
,
Singhal
R
,
Kuljanin
M
,
Kerk
SA
, et al
.
Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance
.
Cancer Cell
.
2022
;
40
(
2
):
185
200.e6
.
46.
Włodarczyk
J
,
Płoska
M
,
Płoski
K
,
Fichna
J
.
Rola krótkołańcuchowych kwasów tłuszczowych w nieswoistych chorobach zapalnych jelit i raku jelita grubego
.
Postepy Biochem
.
2021
;
67
(
3
):
223
30
.
47.
Leong
W
,
Huang
G
,
Liao
W
,
Xia
W
,
Li
X
,
Su
Z
, et al
.
Traditional Patchouli essential oil modulates the host's immune responses and gut microbiota and exhibits potent anti-cancer effects in ApcMin/+ mice
.
Pharmacol Res
.
2022
;
176
:
106082
.
48.
Han
J-H
,
Kim
I-S
,
Jung
S-H
,
Lee
S-G
,
Son
H-Y
,
Myung
C-S
.
The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41
.
PLoS ONE
.
2014
;
9
(
4
):
e95268
.
49.
Natarajan
N
,
Hori
D
,
Flavahan
S
,
Steppan
J
,
Flavahan
NA
,
Berkowitz
DE
, et al
.
Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41
.
Physiol Genomics
.
2016
;
48
(
11
):
826
34
.
50.
Caengprasath
N
,
Gonzalez-Abuin
N
,
Shchepinova
M
,
Ma
Y
,
Inoue
A
,
Tate
EW
, et al
.
Internalization-dependent free fatty acid receptor 2 signaling is essential for propionate-induced anorectic gut hormone release
.
iScience
.
2020
;
23
(
9
):
101449
.
51.
Lin
M
,
Jiang
M
,
Yang
T
,
Zhao
G
,
Zhan
K
.
Overexpression of GPR41 attenuated glucose production in propionate-induced bovine hepatocytes
.
Front Vet Sci
.
2022
;
9
:
981640
.
52.
Carbone
AM
,
Borges
JI
,
Suster
MS
,
Sizova
A
,
Cora
N
,
Desimine
VL
, et al
.
Regulator of G-protein signaling-4 attenuates cardiac adverse remodeling and neuronal norepinephrine release-promoting free fatty acid receptor FFAR3 signaling
.
IJMS
.
2022
;
23
(
10
):
5803
.
You do not currently have access to this content.