Introduction: Recent studies indicate that the gut microbiota controls the host’s immune system. Probiotics use different signaling pathways to regulate intestinal permeability, barrier integrity, and energy balance. Methods: This research examined how Akkermansia muciniphila and its extracellular vesicles (EVs) impact inflammation and genes related to the endocannabinoid system in the STC-1 cell line through RT-PCR and ELISA assays. Results: The study’s results indicated that EVs had a significant impact on GLP-1 expression compared to the multiplicity of infections (MOI) ratio. Notably, there was a substantial increase in the expression of PYY and GLP-1 genes across all treatments (p < 0.05). Conversely, the expression of CB-1, CB-2, and FAAH genes notably decreased in the STC-1 cell line when treated with MOI 50 of A. muciniphila and an EV concentration of 100 μg/mL (p < 0.05). Both MOI 50 of A. muciniphila and an EV concentration of 100 μg/mL significantly enhanced the expression of the TLR-2 gene. In contrast, EVs at a concentration of 100 μg/mL substantially reduced TLR-4 gene expression. A. muciniphila-derived EVs notably decreased the levels of inflammatory cytokines (TNF-α and IL-6), while increasing IL-10 expression at MOI 100 and an EV concentration of 100 μg/mL. These findings suggest that A. muciniphila and its EVs could regulate the expression of specific genes, serving as targets for maintaining host energy balance. Conclusions: In summary, this study illustrates that A. muciniphila-derived EVs exhibit anti-inflammatory properties and have the potential to modulate gene expression in cases of obesity and gastrointestinal tract inflammation.

1.
Aoun
A
,
Darwish
F
,
Hamod
N
.
The influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss
.
Prev Nutr Food Sci
.
2020
;
25
(
2
):
113
23
.
2.
Aron-Wisnewsky
J
,
Warmbrunn
MV
,
Nieuwdorp
M
,
Clément
K
.
Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health—pathophysiology and therapeutic strategies
.
Gastroenterology
.
2021
;
160
(
2
):
573
99
.
3.
Gholizadeh
P
,
Mahallei
M
,
Pormohammad
A
,
Varshochi
M
,
Ganbarov
K
,
Zeinalzadeh
E
, et al
.
Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease
.
Microb Pathog
.
2019
;
127
:
48
55
.
4.
Nicholson
JK
,
Holmes
E
,
Kinross
J
,
Burcelin
R
,
Gibson
G
,
Jia
W
, et al
.
Host-gut microbiota metabolic interactions
.
Science
.
2012
;
336
(
6086
):
1262
7
.
5.
Wang
P
,
Gao
X
,
Li
Y
,
Wang
S
,
Yu
J
,
Wei
Y
.
Bacillus natto regulates gut microbiota and adipose tissue accumulation in a high-fat diet mouse model of obesity
.
J Funct Foods
.
2020
;
68
:
103923
.
6.
Munukka
E
,
Rintala
A
,
Toivonen
R
,
Nylund
M
,
Yang
B
,
Takanen
A
, et al
.
Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice
.
ISME J
.
2017
;
11
(
7
):
1667
79
.
7.
Díez-Sainz
E
,
Milagro
FI
,
Riezu-Boj
JI
,
Lorente-Cebrián
S
.
Effects of gut microbiota–derived extracellular vesicles on obesity and diabetes and their potential modulation through diet
.
J Physiol Biochem
.
2022
;
78
(
2
):
485
99
.
8.
Ashrafian
F
,
Shahriary
A
,
Behrouzi
A
,
Moradi
HR
,
Keshavarz Azizi Raftar
S
,
Lari
A
, et al
.
Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice
.
Front Microbiol
.
2019
;
10
:
2155
.
9.
Zhou
Q
,
Zhang
Y
,
Wang
X
,
Yang
R
,
Zhu
X
,
Zhang
Y
, et al
.
Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American Gut Project
.
Nutr Metab
.
2020
;
17
:
90
9
.
10.
Murphy
DE
,
de Jong
OG
,
Brouwer
M
,
Wood
MJ
,
Lavieu
G
,
Schiffelers
RM
, et al
.
Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking
.
Exp Mol Med
.
2019
;
51
(
3
):
1
12
.
11.
Qin
H-Y
,
Xavier Wong
HL
,
Zang
KH
,
Li
X
,
Bian
ZX
.
Enterochromaffin cell hyperplasia in the gut: factors, mechanism and therapeutic clues
.
Life Sci
.
2019
;
239
:
116886
.
12.
Lund
ML
,
Egerod
KL
,
Engelstoft
MS
,
Dmytriyeva
O
,
Theodorsson
E
,
Patel
BA
, et al
.
Enterochromaffin 5-HT cells–A major target for GLP-1 and gut microbial metabolites
.
Mol Metab
.
2018
;
11
:
70
83
.
13.
Arora
T
,
Akrami
R
,
Pais
R
,
Bergqvist
L
,
Johansson
BR
,
Schwartz
TW
, et al
.
Microbial regulation of the L cell transcriptome
.
Sci Rep
.
2018
;
8
(
1
):
1207
.
14.
Agito
MD
,
Atreja
A
,
Rizk
MK
.
Fecal microbiota transplantation for recurrent C difficile infection: ready for prime time
.
Cleve Clin J Med
.
2013
;
80
(
2
):
101
8
.
15.
Nicolucci
AC
,
Hume
MP
,
Martínez
I
,
Mayengbam
S
,
Walter
J
,
Reimer
RA
.
Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity
.
Gastroenterology
.
2017
;
153
(
3
):
711
22
.
16.
Cani
PD
,
Possemiers
S
,
Van de Wiele
T
,
Guiot
Y
,
Everard
A
,
Rottier
O
, et al
.
Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability
.
Gut
.
2009
;
58
(
8
):
1091
103
.
17.
Everard
A
,
Belzer
C
,
Geurts
L
,
Ouwerkerk
JP
,
Druart
C
,
Bindels
LB
, et al
.
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
22
):
9066
71
.
18.
Manca
C
,
Boubertakh
B
,
Leblanc
N
,
Deschênes
T
,
Lacroix
S
,
Martin
C
, et al
.
Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling
.
J Lipid Res
.
2020
;
61
(
1
):
70
85
.
19.
Silvestri
C
,
Di Marzo
V
.
The gut microbiome–endocannabinoidome axis: a new way of controlling metabolism, inflammation, and behavior
.
Oxford University Press
;
2023
; p.
zqad003
.
20.
Federici
M
.
Our second genome and the impact on metabolic disorders: why gut microbiome is an important player in diabetes and associated abnormalities
.
Springer
;
2019
; p.
491
2
.
21.
Badi
SA
,
Moshiri
A
,
Ettehad Marvasti
F
,
Mojtahedzadeh
M
,
Kazemi
V
,
Siadat
SD
.
Extraction and evaluation of outer membrane vesicles from two important gut microbiota members, Bacteroides fragilis and Bacteroides thetaiotaomicron
.
Cell J
.
2019
;
22
(
3
):
344
.
22.
Ahmad
R
,
Al-Mass
A
,
Atizado
V
,
Al-Hubail
A
,
Al-Ghimlas
F
,
Al-Arouj
M
, et al
.
Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation
.
J Inflamm
.
2012
;
9
(
1
):
48
11
.
23.
Plovier
H
,
Everard
A
,
Druart
C
,
Depommier
C
,
Van Hul
M
,
Geurts
L
, et al
.
A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice
.
Nat Med
.
2017
;
23
(
1
):
107
13
.
24.
Chelakkot
C
,
Choi
Y
,
Kim
DK
,
Park
HT
,
Ghim
J
,
Kwon
Y
, et al
.
Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions
.
Exp Mol Med
.
2018
;
50
(
2
):
e450
.
25.
Ghaderi
F
,
Sotoodehnejadnematalahi
F
,
Hajebrahimi
Z
,
Fateh
A
,
Siadat
SD
.
Author Correction: effects of active, inactive, and derivatives of Akkermansia muciniphila on the expression of the endocannabinoid system and PPARs genes
.
Sci Rep
.
2022
;
12
(
1
):
12301
.
26.
Théry
C
,
Witwer
KW
,
Aikawa
E
,
Alcaraz
MJ
,
Anderson
JD
,
Andriantsitohaina
R
, et al
.
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
.
J Extracell Vesicles
.
2018
;
7
(
1
):
1535750
.
27.
Jo
HY
,
Kim
Y
,
Park
HW
,
Moon
HE
,
Bae
S
,
Kim
J
, et al
.
The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells
.
Exp Neurobiol
.
2015
;
24
(
3
):
235
45
.
28.
Bose
S
,
Aggarwal
S
,
Singh
DV
,
Acharya
N
.
Extracellular vesicles: an emerging platform in gram-positive bacteria
.
Microb Cell
.
2020
;
7
(
12
):
312
22
.
29.
Liu
Y
,
Defourny
KAY
,
Smid
EJ
,
Abee
T
.
Gram-positive bacterial extracellular vesicles and their impact on health and disease
.
Front Microbiol
.
2018
;
9
:
1502
.
30.
Cani
PD
,
de Vos
WM
.
Next-generation beneficial microbes: the case of Akkermansia muciniphila
.
Front Microbiol
.
2017
;
8
:
1765
.
31.
Ghaffari
S
,
Abbasi
A
,
Somi
MH
,
Moaddab
SY
,
Nikniaz
L
,
Kafil
HS
, et al
.
Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome
.
Crit Rev Food Sci Nutr
.
2023
;
63
(
25
):
7357
77
.
32.
Yang
M
,
Bose
S
,
Lim
S
,
Seo
J
,
Shin
J
,
Lee
D
, et al
.
Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation
.
Microorganisms
.
2020
;
8
(
9
):
1413
.
33.
Abuqwider
JN
,
Mauriello
G
,
Altamimi
M
.
Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review
.
Microorganisms
.
2021
;
9
(
5
):
1098
.
34.
Bian
X
,
Wu
W
,
Yang
L
,
Lv
L
,
Wang
Q
,
Li
Y
, et al
.
Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice
.
Front Microbiol
.
2019
;
10
:
2259
.
35.
Cani
PD
,
Geurts
L
,
Matamoros
S
,
Plovier
H
,
Duparc
T
.
Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond
.
Diabetes Metab
.
2014
;
40
(
4
):
246
57
.
36.
Yan
Y
,
Sha
Y
,
Yao
G
,
Wang
S
,
Kong
F
,
Liu
H
, et al
.
Roux-en-Y gastric bypass versus medical treatment for type 2 diabetes mellitus in obese patients: a systematic review and meta-analysis of randomized controlled trials
.
Medicine
.
2016
;
95
(
17
):
e3462
.
37.
D’argenio
G
,
Valenti
M
,
Scaglione
G
,
Cosenza
V
,
Sorrentini
I
,
Di Marzo
V
.
Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation
.
FASEB J
.
2006
;
20
(
3
):
568
70
.
38.
Ottman
N
,
Reunanen
J
,
Meijerink
M
,
Pietilä
TE
,
Kainulainen
V
,
Klievink
J
, et al
.
Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function
.
PLoS One
.
2017
;
12
(
3
):
e0173004
.
39.
Di Marzo
V
,
Izzo
AA
.
Endocannabinoid overactivity and intestinal inflammation
.
Gut
.
2006
;
55
(
10
):
1373
6
.
40.
Keshavarz Azizi Raftar
S
,
Ashrafian
F
,
Yadegar
A
,
Lari
A
,
Moradi
HR
,
Shahriary
A
, et al
.
The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury
.
Microbiol Spectr
.
2021
;
9
(
2
):
e0048421
21
.
41.
Ashrafian
F
,
Keshavarz Azizi Raftar
S
,
Lari
A
,
Shahryari
A
,
Abdollahiyan
S
,
Moradi
HR
, et al
.
Extracellular vesicles and pasteurized cells derived from Akkermansia muciniphila protect against high-fat induced obesity in mice
.
Microb Cell Fact
.
2021
;
20
:
219
7
.
42.
Oraby
T
,
Tyshenko
MG
,
Maldonado
JC
,
Vatcheva
K
,
Elsaadany
S
,
Alali
WQ
, et al
.
Modeling the effect of lockdown timing as a COVID-19 control measure in countries with differing social contacts
.
Sci Rep
.
2021
;
11
(
1
):
3354
.
43.
Seregin
SS
,
Golovchenko
N
,
Schaf
B
,
Chen
J
,
Pudlo
NA
,
Mitchell
J
, et al
.
NLRP6 protects Il10−/− mice from colitis by limiting colonization of Akkermansia muciniphila
.
Cell Rep
.
2017
;
19
(
10
):
2174
745
.
44.
Yaghoubfar
R
,
Behrouzi
A
,
Ashrafian
F
,
Shahryari
A
,
Moradi
HR
,
Choopani
S
, et al
.
Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice
.
Sci Rep
.
2020
;
10
(
1
):
22119
.
45.
Yáñez-Mó
M
,
Siljander
PRM
,
Andreu
Z
,
Zavec
AB
,
Borràs
FE
,
Buzas
EI
, et al
.
Biological properties of extracellular vesicles and their physiological functions
.
J Extracell Vesicles
.
2015
;
4
(
1
):
27066
.
46.
Deatherage
BL
,
Cookson
BT
.
Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life
.
Infect Immun
.
2012
;
80
(
6
):
1948
57
.
47.
Xu
Z
,
Hao
X
,
Li
M
,
Luo
H
.
Rhodococcus equi-derived extracellular vesicles promoting inflammatory response in macrophage through TLR2-NF-κB/MAPK pathways
.
Int J Mol Sci
.
2022
;
23
(
17
):
9742
.
You do not currently have access to this content.