Introduction: Natural killer (NK) cells are associated with the pathogenesis of ulcerative colitis (UC); however, their precise contributions remain unclear. The present study aimed to investigate the diagnostic value of the activated NK-associated gene (ANAG) score in UC and evaluate its predictive value in response to biological therapy. Methods: Bulk RNA-seq and scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) and Single Cell Portal (SCP) databases. In the bulk RNA-seq, differentially expressed genes (DEGs) were screened by the “Batch correction” and “Robust rank aggregation” (RRA) methods. The immune infiltration landscape was estimated using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. DEGs that correlated with activated NK cells were identified as activated NK-associated genes (ANAGs). Protein-protein interaction (PPI) analysis and least absolute shrinkage and selection operator (LASSO) regression were used to screen key ANAGs and establish an ANAG score. The expression levels of the four key ANAGs were validated in human samples by real-time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence. The potential therapeutic drugs for UC were identified using the DSigDB database. Through scRNA-seq data analysis, the cell scores based on the ANAGs were calculated by “AddModuleScore” and “AUCell.” Results: Immune infiltration analysis revealed a higher abundance of activated NK cells in noninflamed UC tissues (ssGSEA, p < 0.001; CIBERSORT, p < 0.01). Fifty-four DEGs correlated with activated NK cells were identified as ANAGs. The ANAG score was established using four key ANAGs (SELP, TIMP1, MMP7, and ABCG2). The ANAG scores were significantly higher in inflamed tissues (p < 0.001) and in biological therapy nonresponders (NR) tissues before treatment (golimumab, p < 0.05; ustekinumab, p < 0.001). The ANAG score demonstrated an excellent diagnostic value (AUC = 0.979). Patients with higher ANAG scores before treatment were more likely to experience a lack of response to golimumab or ustekinumab (golimumab, p < 0.05; ustekinumab, p < 0.001). Conclusion: This study established a novel ANAG score with the ability to precisely diagnose UC and distinguish the efficacy of biological treatment.

1.
Ungaro
R
,
Mehandru
S
,
Allen
PB
,
Peyrin-Biroulet
L
,
Colombel
J-F
.
Ulcerative colitis
.
Lancet
.
2017
;
389
(
10080
):
1756
70
.
2.
Kobayashi
T
,
Siegmund
B
,
Le Berre
C
,
Wei
SC
,
Ferrante
M
,
Shen
B
, et al
.
Ulcerative colitis
.
Nat Rev Dis Prim
.
2020
;
6
(
1
):
74
.
3.
Le Berre
C
,
Honap
S
,
Peyrin-Biroulet
L
.
Ulcerative colitis
.
Lancet
.
2023
;
402
(
10401
):
571
84
.
4.
Burisch
J
,
Ungaro
R
,
Vind
I
,
Prosberg
MV
,
Bendtsen
F
,
Colombel
JF
, et al
.
Proximal disease extension in patients with limited ulcerative colitis: a Danish populationbased inception cohort
.
J Crohn’s Colitis
.
2017
;
11
(
10
):
1200
4
.
5.
Steel
AW
,
Mela
CM
,
Lindsay
JO
,
Gazzard
BG
,
Goodier
MR
.
Increased proportion of CD16+ NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment
.
Aliment Pharmacol Ther
.
2011
;
33
(
1
):
115
26
.
6.
Ng
SC
,
Plamondon
S
,
Al-Hassi
HO
,
English
N
,
Gellatly
N
,
Kamm
MA
, et al
.
A novel population of human CD56+ human leucocyte antigen D-related (HLA-DR+) colonic lamina propria cells is associated with inflammation in ulcerative colitis: original ARTICLE
.
Clin Exp Immunol
.
2009
;
158
(
2
):
205
18
.
7.
Schulthess
J
,
Meresse
B
,
Ramiro-Puig
E
,
Montcuquet
N
,
Darche
S
,
Bègue
B
, et al
.
Interleukin-15-Dependent NKp46 + innate lymphoid cells control intestinal inflammation by recruiting inflammatory monocytes
.
Immunity
.
2012
;
37
(
1
):
108
21
.
8.
Shimamoto
M
,
Ueno
Y
,
Tanaka
S
,
Onitake
T
,
Hanaoka
R
,
Yoshioka
K
, et al
.
Selective decrease in colonic CD56 + T and CD161 + T cells in the inflamed mucosa of patients with ulcerative colitis
.
World J Gastroenterol
.
2007
;
13
(
45
):
5995
6002
.
9.
Hall
LJ
,
Murphy
CT
,
Quinlan
A
,
Hurley
G
,
Shanahan
F
,
Nally
K
, et al
.
Natural killer cells protect mice from DSS-induced colitis by regulating neutrophil function via the NKG2A receptor
.
Mucosal Immunol
.
2013
;
6
(
5
):
1016
26
.
10.
Fathollahi
A
,
Aslani
S
,
Mostafaei
S
,
Rezaei
N
,
Mahmoudi
M
.
The role of killer-cell immunoglobulin-like receptor (KIR) genes in susceptibility to inflammatory bowel disease: systematic review and meta-analysis
.
Inflamm Res
.
2018
;
67
(
9
):
727
36
.
11.
Keir
ME
,
Fuh
F
,
Ichikawa
R
,
Acres
M
,
Hackney
JA
,
Hulme
G
, et al
.
Regulation and role of αE integrin and gut homing integrins in migration and retention of intestinal lymphocytes during inflammatory bowel disease
.
J Immunol
.
2021
;
207
(
9
):
2245
54
.
12.
Vanhove
W
,
Peeters
PM
,
Staelens
D
,
Schraenen
A
,
Van Der Goten
J
,
Cleynen
I
, et al
.
Strong upregulation of AIM2 and IFI16 inflammasomes in the mucosa of patients with active inflammatory bowel disease
.
Inflamm Bowel Dis
.
2015
;
21
(
11
):
2673
82
.
13.
Noble
CL
,
Abbas
AR
,
Cornelius
J
,
Lees
CW
,
Ho
GT
,
Toy
K
, et al
.
Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis
.
Gut
.
2008
;
57
(
10
):
1398
405
.
14.
Li
K
,
Strauss
R
,
Ouahed
J
,
Chan
D
,
Telesco
SE
,
Shouval
DS
, et al
.
Molecular comparison of adult and pediatric ulcerative colitis indicates broad similarity of molecular pathways in disease tissue
.
J Pediatr Gastroenterol Nutr
.
2018
;
67
(
1
):
45
52
.
15.
Sandborn
WJ
,
Feagan
BG
,
Marano
C
,
Zhang
H
,
Strauss
R
,
Johanns
J
, et al
.
Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis
.
Gastroenterology
.
2014
;
146
(
1
):
85
e15
.
16.
Pavlidis
P
,
Tsakmaki
A
,
Pantazi
E
,
Li
K
,
Cozzetto
D
,
Digby- Bell
J
, et al
.
Interleukin-22 regulates neutrophil recruitment in ulcerative colitis and is associated with resistance to ustekinumab therapy
.
Nat Commun
.
2022
;
13
(
1
):
5820
.
17.
Arijs
I
,
De Hertogh
G
,
Lemmens
B
,
Van Lommel
L
,
De Bruyn
M
,
Vanhove
W
, et al
.
Effect of vedolizumab (anti-α4β7-integrin) therapy on histological healing and mucosal gene expression in patients with UC
.
Gut
.
2018
;
67
(
1
):
43
52
.
18.
Smillie
CS
,
Biton
M
,
Ordovas-Montanes
J
,
Sullivan
KM
,
Burgin
G
,
Graham
DB
, et al
.
Intra- and inter-cellular rewiring of the human colon during ulcerative colitis
.
Cell
.
2019
;
178
(
3
):
714
30.e22
.
19.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
,
Mukherjee
S
,
Ebert
BL
,
Gillette
MA
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
50
.
20.
Bindea
G
,
Mlecnik
B
,
Tosolini
M
,
Kirilovsky
A
,
Waldner
M
,
Obenauf
AC
, et al
.
Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer
.
Immunity
.
2013
;
39
(
4
):
782
95
.
21.
Newman
AM
,
Steen
CB
,
Liu
CL
,
Gentles
AJ
,
Chaudhuri
AA
,
Scherer
F
, et al
.
Determining cell type abundance and expression from bulk tissues with digital cytometry
.
Nat Biotechnol
.
2019
;
37
(
7
):
773
82
.
22.
Yu
G
,
Wang
LG
,
Han
Y
,
He
QY
.
ClusterProfiler: an R package for comparing biological themes among gene clusters
.
Omi A J Integr Biol
.
2012
;
16
(
5
):
284
7
.
23.
Szklarczyk
D
,
Gable
AL
,
Lyon
D
,
Junge
A
,
Wyder
S
,
Huerta-Cepas
J
, et al
.
STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D607
D613
.
24.
Shannon
P
,
Markiel
A
,
Ozier
O
,
Baliga
NS
,
Wang
JT
,
Ramage
D
, et al
.
Cytoscape: a software environment for integrated models of biomolecular interaction networks
.
Genome Res
.
2003
;
13
(
11
):
2498
504
.
25.
Yadav
PK
,
Chen
C
,
Liu
Z
.
Potential role of NK cells in the pathogenesis of inflammatory bowel disease
.
J Biomed Biotechnol
.
2011
;
2011
:
348530
.
26.
Poggi
A
,
Benelli
R
,
Venè
R
,
Costa
D
,
Ferrari
N
,
Tosetti
F
, et al
.
Human gut-associated natural killer cells in health and disease
.
Front Immunol
.
2019
;
10
:
961
.
27.
Jones
DC
,
Edgar
RS
,
Ahmad
T
,
Cummings
JRF
,
Jewell
DP
,
Trowsdale
J
, et al
.
Killer Ig-like receptor (KIR) genotype and HLA ligand combinations in ulcerative colitis susceptibility
.
Genes Immun
.
2006
;
7
:
576
82
.
28.
Wang
F
,
Peng
PL
,
Lin
X
,
Chang
Y
,
Liu
J
,
Zhou
R
, et al
.
Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis
.
Oncotarget
.
2017
;
8
(
58
):
98945
52
.
29.
Yusung
S
,
McGovern
D
,
Lin
L
,
Hommes
D
,
Lagishetty
V
,
Braun
J
.
NK cells are biologic and biochemical targets of 6-mercaptopurine in Crohn’s disease patients
.
Clin Immunol
.
2017
;
175
:
82
90
.
30.
Vestweber
D
,
Blanks
JE
.
Mechanisms that regulate the function of the selectins and their ligands
.
Physiol Rev
.
1999
;
79
(
1
):
181
213
.
31.
Furie
B
,
Furie
BC
.
Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation
.
Trends Mol Med
.
2004
;
10
(
4
):
171
8
.
32.
Chen
M
,
Geng
JG
.
P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis
.
Arch Immunol Ther Exp
.
2006
;
54
(
2
):
75
84
.
33.
Sanders
WE
,
Wilson
RW
,
Ballantyne
CM
,
Beaudet
AL
.
Molecular cloning and analysis of in vivo expression of murine P-selectin
.
Blood
.
1992
;
80
(
3
):
795
800
.
34.
Weller
A
,
Isenmann
S
,
Vestweber
D
.
Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor alpha
.
J Biol Chem
.
1992
;
267
(
21
):
15176
83
.
35.
Hahne
M
,
Jäger
U
,
Isenmann
S
,
Hallmann
R
,
Vestweber
D
.
Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes
.
J Cell Biol
.
1993
;
121
(
3
):
655
64
.
36.
Deng
B
,
Liao
F
,
Liu
Y
,
He
P
,
Wei
S
,
Liu
C
, et al
.
Comprehensive analysis of endoplasmic reticulum stress-associated genes signature of ulcerative colitis
.
Front Immunol
.
2023
;
14
:
1158648
17
.
37.
Matrisian
LM
.
The matrix-degrading metalloproteinases
.
Bioessays
.
1992
;
14
(
7
):
455
63
.
38.
Marônek
M
,
Marafini
I
,
Gardlík
R
,
Link
R
,
Troncone
E
,
Monteleone
G
.
Metalloproteinases in inflammatory bowel diseases
.
J Inflamm Res
.
2021
;
14
:
1029
41
.
39.
Miyazaki
K
,
Hattori
Y
,
Umenishi
F
,
Yasumitsu
H
,
Umeda
M
.
Purification and characterization of extracellular matrix-degrading metalloproteinase, matrin (pump-1), secreted from human rectal carcinoma cell line
.
Cancer Res
.
1990
;
50
(
24
):
7758
64
.
40.
Wilson
CL
,
Matrisian
LM
.
Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions
.
Int J Biochem Cell Biol
.
1996
;
28
(
2
):
123
36
.
41.
Rath
T
,
Roderfeld
M
,
Halwe
JM
,
Tschuschner
A
,
Roeb
E
,
Graf
J
.
Cellular sources of MMP-7, MMP-13 and MMP-28 in ulcerative colitis
.
Scand J Gastroenterol
.
2010
;
45
(
10
):
1186
96
.
42.
Mäkitalo
L
,
Kolho
KL
,
Karikoski
R
,
Anthoni
H
,
Saarialho-Kere
U
.
Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease
.
Scand J Gastroenterol
.
2010
;
45
(
7–8
):
862
71
.
43.
Von Lampe
B
,
Barthel
B
,
Coupland
SE
,
Riecken
EO
,
Rosewicz
S
.
Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease
.
Gut
.
2000
;
47
(
1
):
63
73
.
44.
Medina
C
,
Radomski
MW
.
Role of matrix metalloproteinases in intestinal inflammation
.
J Pharmacol Exp Ther
.
2006
;
318
(
3
):
933
8
.
45.
Wiercinska-Drapalo
A
,
Jaroszewicz
J
,
Flisiak
R
,
Prokopowicz
D
.
Plasma matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 as biomarkers of ulcerative colitis activity
.
World J Gastroenterol
.
2003
;
9
(
12
):
2843
5
.
46.
Meijer
MJW
,
Mieremet-Ooms
MAC
,
van Hogezand
RA
,
Lamers
CBHW
,
Hommes
DW
,
Verspaget
HW
.
Role of matrix metalloproteinase, tissue inhibitor of metalloproteinase and tumor necrosis factor-alpha single nucleotide gene polymorphisms in inflammatory bowel disease
.
World J Gastroenterol
.
2007
;
13
(
21
):
2960
6
.
47.
Meijer
MJ
,
Mieremet-Ooms
MAC
,
Sier
CFM
,
van Hogezand
RA
,
Lamers
CBHW
,
Hommes
DW
, et al
.
Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for diagnostic and surgical recurrence in Crohn’s disease
.
Inflamm Bowel Dis
.
2009
;
15
(
1
):
84
92
.
48.
Kapsoritakis
AN
,
Kapsoritaki
AI
,
Davidi
IP
,
Lotis
VD
,
Manolakis
AC
,
Mylonis
PI
, et al
.
Imbalance of tissue inhibitors of metalloproteinases (TIMP) - 1 and - 4 serum levels, in patients with inflammatory bowel disease
.
BMC Gastroenterol
.
2008
;
8
:
55
8
.
49.
Kusano
K
,
Miyaura
C
,
Inada
M
,
Tamura
T
,
Ito
A
,
Nagase
H
, et al
.
Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption
.
Endocrinology
.
1998
;
139
(
3
):
1338
45
.
50.
Sarén
P
,
Welgus
HG
,
Kovanen
PT
.
TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages
.
J Immunol
.
1996
;
157
(
9
):
4159
65
.
51.
Murphy
G
,
Reynolds
JJ
,
Werb
Z
.
Biosynthesis of tissue inhibitor of metalloproteinases by human fibroblasts in culture. Stimulation by 12-O-tetradecanoylphorbol 13-acetate and interleukin 1 in parallel with collagenase
.
J Biol Chem
.
1985
;
260
(
5
):
3079
83
.
52.
Lotz
M
,
Guerne
PA
.
Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA)
.
J Biol Chem
.
1991
;
266
(
4
):
2017
20
.
53.
Pavek
P
,
Merino
G
,
Wagenaar
E
,
Bolscher
E
,
Novotna
M
,
Jonker
JW
, et al
.
Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine
.
J Pharmacol Exp Ther
.
2005
;
312
(
1
):
144
52
.
54.
Jonker
JW
,
Buitelaar
M
,
Wagenaar
E
,
Van der Valk
MA
,
Scheffer
GL
,
Scheper
RJ
, et al
.
The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
24
):
15649
54
.
55.
Van Herwaarden
AE
,
Jonker
JW
,
Wagenaar
E
,
Brinkhuis
RF
,
Schellens
JHM
,
Beijnen
JH
, et al
.
The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
.
Cancer Res
.
2003
;
63
(
19
):
6447
52
.
56.
van Herwaarden
AE
,
Wagenaar
E
,
Karnekamp
B
,
Merino
G
,
Jonker
JW
,
Schinkel
AH
.
Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk
.
Carcinogenesis
.
2006
;
27
(
1
):
123
30
.
57.
Ebert
B
,
Seidel
A
,
Lampen
A
.
Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists
.
Carcinogenesis
.
2005
;
26
(
10
):
1754
63
.
58.
Jonker
JW
,
Merino
G
,
Musters
S
,
Van Herwaarden
AE
,
Bolscher
E
,
Wagenaar
E
, et al
.
The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk
.
Nat Med
.
2005
;
11
(
2
):
127
9
.
59.
Breedveld
P
,
Zelcer
N
,
Pluim
D
,
Sönmezer
Ö
,
Tibben
MM
,
Beijnen
JH
, et al
.
Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions
.
Cancer Res
.
2004
;
64
(
16
):
5804
11
.
60.
Jonker
JW
,
Smit
JW
,
Brinkhuis
RF
,
Maliepaard
M
,
Beijnen
JH
,
Schellens
JHM
, et al
.
Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan
.
J Natl Cancer Inst
.
2000
;
92
(
20
):
1651
6
.
61.
Merino
G
,
Jonker
JW
,
Wagenaar
E
,
Van Herwaarden
AE
,
Schinkel
AH
.
The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin
.
Mol Pharmacol
.
2005
;
67
(
5
):
1758
64
.
62.
Zaher
H
,
Khan
AA
,
Palandra
J
,
Brayman
TG
,
Yu
L
,
Ware
JA
.
Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse
.
Mol Pharm
.
2006
;
3
(
1
):
55
61
.
63.
Deuring
JJ
,
Peppelenbosch
MP
,
Kuipers
EJ
,
Van Der Woude
CJ
,
De Haar
C
.
Impeded protein folding and function in active inflammatory bowel disease
.
Biochem Soc Trans
.
2011
;
39
(
4
):
1107
11
.
64.
Chen
C
,
Zhang
Z
,
Liu
C
,
Sun
P
,
Liu
P
,
Li
X
.
ABCG2 is an itaconate exporter that limits antibacterial innate immunity by alleviating TFEB-dependent lysosomal biogenesis
.
Cell Metab
.
2024
;
36
(
3
):
498
510.e11
.
65.
Thibault
R
,
De Coppet
P
,
Daly
K
,
Bourreille
A
,
Cuff
M
,
Bonnet
C
, et al
.
Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation
.
Gastroenterology
.
2007
;
133
(
6
):
1916
27
.
66.
Gutmann
H
,
Hruz
P
,
Zimmermann
C
,
Straumann
A
,
Terracciano
L
,
Hammann
F
, et al
.
Breast cancer resistance protein and P-glycoprotein expression in patients with newly diagnosed and therapy-refractory ulcerative colitis compared with healthy controls
.
Digestion
.
2008
;
78
(
2–3
):
154
62
.
67.
Thibault
R
,
Blachier
F
,
Darcy-Vrillon
B
,
De Coppet
P
,
Bourreille
A
,
Segain
JP
.
Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency
.
Inflamm Bowel Dis
.
2010
;
16
(
4
):
684
95
.
68.
Deuring
JJ
,
De Haar
C
,
Koelewijn
CL
,
Kuipers
EJ
,
Peppelenbosch
MP
,
Van Der Woude
CJ
.
Absence of ABCG2-mediated mucosal detoxification in patients with active inflammatory bowel disease is due to impeded protein folding
.
Biochem J
.
2012
;
441
(
1
):
87
93
.
69.
Ferrer-Picón
E
,
Dotti
I
,
Corraliza
AM
,
Mayorgas
A
,
Esteller
M
,
Perales
JC
, et al
.
Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease
.
Inflamm Bowel Dis
.
2020
;
26
(
1
):
43
55
.
70.
Englund
G
,
Jacobson
A
,
Rorsman
F
,
Artursson
P
,
Kindmark
A
,
Rönnblom
A
.
Efflux transporters in ulcerative colitis: decreased expression of BCRP (ABCG2) and Pgp (ABCB1)
.
Inflamm Bowel Dis
.
2007
;
13
(
3
):
291
7
.
71.
Gros
B
,
Kaplan
GG
.
Ulcerative colitis in adults: a review
.
Jama
.
2023
;
330
(
10
):
951
65
.
72.
Lamb
CA
,
Saifuddin
A
,
Powell
N
,
Rieder
F
.
The future of precision medicine to predict outcomes and control tissue remodeling in inflammatory bowel disease
.
Gastroenterology
.
2022
;
162
(
5
):
1525
42
.
73.
Fine
S
,
Papamichael
K
,
Cheifetz
AS
.
Etiology and management of lack or loss of response to anti–tumor necrosis factor therapy in patients with inflammatory bowel disease
.
Gastroenterol Hepatol
.
2019
;
15
(
12
):
656
65
.
74.
Ding
NS
,
Hart
A
,
De Cruz
P
.
Systematic review: predicting and optimising response to anti-TNF therapy in Crohn’s disease: algorithm for practical management
.
Aliment Pharmacol Ther
.
2016
;
43
(
1
):
30
51
.
75.
Vermeire
S
,
Gils
A
,
Accossato
P
,
Lula
S
,
Marren
A
.
Immunogenicity of biologics in inflammatory bowel disease
.
Therap Adv Gastroenterol
.
2018
;
11
:
1756283X1775035
.
You do not currently have access to this content.