Introduction: Tumor-associated macrophages, which are part of the tumor microenvironment, are a major factor in cancer progression. However, a complete understanding of the regulatory mechanism of M2 polarization of macrophages (Mø) in liver cancer is yet to be established. This study aimed to investigate the potential mechanism by which NEIL3 influenced M2 Mø polarization in liver cancer. Methods: Bioinformatics analysis analyzed NEIL3 expression and its enriched pathways in liver cancer tissue, as well as its correlation with pathway genes. The upstream transcription factor of NEIL3, TFAP2A, was predicted and its expression in liver cancer tissue was analyzed. The binding relationship between the two was analyzed by dual-luciferase reporter and chromatin immunoprecipitation experiments. qRT-PCR assessed NEIL3 and TFAP2A levels in liver cancer cells. Cell viability was detected by CCK-8, while CD206 and CD86 expression was detected by immunofluorescence. IL-10 and CCR2 expressions were assessed using qRT-PCR, and M2 Mø quantity was detected using flow cytometry. Reagent kits tested glutamine (Gln) consumption, α-ketoglutarate, and glutamate content, as well as NADPH/NADP+ and GSH/GSSG ratios. Expression of Gln transport proteins was detected using Western blot. An animal model was established to investigate the influence of NEIL3 expression on liver cancer growth. Results: NEIL3 was highly expressed in liver cancer and promoted Mø M2 polarization through Gln metabolism. TFAP2A was identified as the upstream transcription factor of NEIL3 and was highly expressed in liver cancer. Rescue experiments presented that overexpression of NEIL3 reversed the suppressive effect of TFAP2A knockdown on Mø M2 polarization in liver cancer. In vivo experiments demonstrated that the knockdown of NEIL3 could significantly repress the growth of xenograft tumors. Conclusion: This study suggested that the TFAP2A/NEIL3 axis promoted Mø M2 polarization through Gln metabolism, providing a theoretical basis for immune therapy targeting the liver cancer TME.

1.
Llovet
JM
,
Kelley
RK
,
Villanueva
A
,
Singal
AG
,
Pikarsky
E
,
Roayaie
S
, et al
.
Author correction: hepatocellular carcinoma
.
Nat Rev Dis Primers
.
2024
;
10
(
1
):
10
.
2.
Finn
RS
,
Qin
S
,
Ikeda
M
,
Galle
PR
,
Ducreux
M
,
Kim
TY
, et al
.
Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma
.
N Engl J Med
.
2020
;
382
(
20
):
1894
905
.
3.
Muppala
S
.
Significance of the tumor microenvironment in liver cancer progression
.
Crit Rev Oncog
.
2020
;
25
(
1
):
1
9
.
4.
Gao
J
,
Liang
Y
,
Wang
L
.
Shaping polarization of tumor-associated macrophages in cancer immunotherapy
.
Front Immunol
.
2022
;
13
:
888713
.
5.
Li
Z
,
Wu
T
,
Zheng
B
,
Chen
L
.
Individualized precision treatment: targeting TAM in HCC
.
Cancer Lett
.
2019
;
458
:
86
91
.
6.
Ye
YC
,
Zhao
JL
,
Lu
YT
,
Gao
CC
,
Yang
Y
,
Liang
SQ
, et al
.
NOTCH signaling via WNT regulates the proliferation of alternative, CCR2-independent tumor-associated macrophages in hepatocellular carcinoma
.
Cancer Res
.
2019
;
79
(
16
):
4160
72
.
7.
Chen
J
,
Huang
ZB
,
Liao
CJ
,
Hu
XW
,
Li
SL
,
Qi
M
, et al
.
LncRNA TP73-AS1/miR-539/MMP-8 axis modulates M2 macrophage polarization in hepatocellular carcinoma via TGF-β1 signaling
.
Cell Signal
.
2020
;
75
:
109738
.
8.
Li
H
,
Zhu
R
,
Liu
X
,
Zhao
K
,
Hong
D
.
Siglec-15 regulates the inflammatory response and polarization of tumor-associated macrophages in pancreatic cancer by inhibiting the cGAS-STING signaling pathway
.
Oxid Med Cell Longev
.
2022
;
2022
:
3341038
.
9.
Brune
B
,
Weigert
A
,
Dehne
N
.
Macrophage polarization in the tumor microenvironment
.
Redox Biol
.
2015
;
5
:
419
.
10.
Hossain
F
,
Al-Khami
AA
,
Wyczechowska
D
,
Hernandez
C
,
Zheng
L
,
Reiss
K
, et al
.
Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
.
Cancer Immunol Res
.
2015
;
3
(
11
):
1236
47
.
11.
Palmieri
EM
,
Menga
A
,
Martin-Perez
R
,
Quinto
A
,
Riera-Domingo
C
,
De Tullio
G
, et al
.
Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis
.
Cell Rep
.
2017
;
20
(
7
):
1654
66
.
12.
Liu
PS
,
Wang
H
,
Li
X
,
Chao
T
,
Teav
T
,
Christen
S
, et al
.
α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
.
Nat Immunol
.
2017
;
18
(
9
):
985
94
.
13.
Krokeide
SZ
,
Laerdahl
JK
,
Salah
M
,
Luna
L
,
Cederkvist
FH
,
Fleming
AM
, et al
.
Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin
.
DNA Repair
.
2013
;
12
(
12
):
1159
64
.
14.
Zhou
J
,
Chan
J
,
Lambele
M
,
Yusufzai
T
,
Stumpff
J
,
Opresko
PL
, et al
.
NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis
.
Cell Rep
.
2017
;
20
(
9
):
2044
56
.
15.
Zhang
F
,
Lu
J
,
Yang
J
,
Dai
Q
,
Du
X
,
Xu
Y
, et al
.
SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma
.
Immunogenetics
.
2023
;
75
(
1
):
39
51
.
16.
Wang
W
,
Yin
Q
,
Guo
S
,
Wang
J
.
NEIL3 contributes toward the carcinogenesis of liver cancer and regulates PI3K/Akt/mTOR signaling
.
Exp Ther Med
.
2021
;
22
(
4
):
1053
.
17.
Liao
W
,
Huang
S
,
Li
L
,
Wang
J
,
Li
J
,
Chen
Y
, et al
.
Pan-cancer landscape of NEIL3 in tumor microenvironment: a promising predictor for chemotherapy and immunotherapy
.
Cancers
.
2022
;
15
(
1
):
109
.
18.
Zhou
X
,
Liu
K
,
Cui
J
,
Xiong
J
,
Wu
H
,
Peng
T
, et al
.
Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer
.
J Exp Clin Cancer Res
.
2021
;
40
(
1
):
124
.
19.
Rahman
I
,
Kode
A
,
Biswas
SK
.
Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method
.
Nat Protoc
.
2006
;
1
(
6
):
3159
65
.
20.
Huang
Y
,
Luo
Y
,
Ou
W
,
Wang
Y
,
Dong
D
,
Peng
X
, et al
.
Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC
.
Cancer Cell Int
.
2021
;
21
(
1
):
528
.
21.
Fang
W
,
Zhou
T
,
Shi
H
,
Yao
M
,
Zhang
D
,
Qian
H
, et al
.
Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8(+) T cell exclusion
.
J Exp Clin Cancer Res
.
2021
;
40
(
1
):
4
.
22.
Xun
J
,
Du
L
,
Gao
R
,
Shen
L
,
Wang
D
,
Kang
L
, et al
.
Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B
.
Theranostics
.
2021
;
11
(
14
):
6847
59
.
23.
Huang
H
,
Hua
Q
.
NEIL3 mediates lung cancer progression and modulates PI3K/AKT/mTOR signaling: a potential therapeutic target
.
Int J Genomics
.
2022
;
2022
:
8348499
.
24.
Lai
HH
,
Hung
LY
,
Yen
CJ
,
Hung
HC
,
Chen
RY
,
Ku
YC
, et al
.
NEIL3 promotes hepatoma epithelial-mesenchymal transition by activating the BRAF/MEK/ERK/TWIST signaling pathway
.
J Pathol
.
2022
;
258
(
4
):
339
52
.
25.
Singh
S
,
Mehta
N
,
Lilan
J
,
Budhthoki
MB
,
Chao
F
,
Yong
L
.
Initiative action of tumor-associated macrophage during tumor metastasis
.
Biochim Open
.
2017
;
4
:
8
18
.
26.
Meng
Z
,
Zhang
R
,
Wang
Y
,
Zhu
G
,
Jin
T
,
Li
C
, et al
.
miR-200c/PAI-2 promotes the progression of triple negative breast cancer via M1/M2 polarization induction of macrophage
.
Int Immunopharmacol
.
2020
;
81
:
106028
.
27.
Zhao
S
,
Mi
Y
,
Guan
B
,
Zheng
B
,
Wei
P
,
Gu
Y
, et al
.
Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer
.
J Hematol Oncol
.
2020
;
13
(
1
):
156
.
28.
Anwanwan
D
,
Singh
SK
,
Singh
S
,
Saikam
V
,
Singh
R
.
Challenges in liver cancer and possible treatment approaches
.
Biochim Biophys Acta Rev Cancer
.
2020
;
1873
(
1
):
188314
.
29.
Lee
JH
,
Lee
JH
,
Lim
YS
,
Yeon
JE
,
Song
TJ
,
Yu
SJ
, et al
.
Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma
.
Gastroenterology
.
2015
;
148
(
7
):
1383
91 e6
.
30.
Yau
T
,
Park
JW
,
Finn
RS
,
Cheng
AL
,
Mathurin
P
,
Edeline
J
, et al
.
Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial
.
Lancet Oncol
.
2022
;
23
(
1
):
77
90
.
31.
Hashimoto
A
,
Sarker
D
,
Reebye
V
,
Jarvis
S
,
Sodergren
MH
,
Kossenkov
A
, et al
.
Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer
.
Clin Cancer Res
.
2021
;
27
(
21
):
5961
78
.
32.
Krokeide
SZ
,
Bolstad
N
,
Laerdahl
JK
,
Bjoras
M
,
Luna
L
.
Expression and purification of NEIL3, a human DNA glycosylase homolog
.
Protein Expr Purif
.
2009
;
65
(
2
):
160
4
.
33.
Wu
D
,
Zhang
G
,
Ma
J
,
Wu
H
,
Xiong
J
,
Huang
X
, et al
.
Upregulation of nei-like DNA glycosylase 3 predicts poor prognosis in hepatocellular carcinoma
.
J Oncol
.
2021
;
2021
:
1301671
.
34.
Poto
R
,
Gambardella
AR
,
Marone
G
,
Schroeder
JT
,
Mattei
F
,
Schiavoni
G
, et al
.
Basophils from allergy to cancer
.
Front Immunol
.
2022
;
13
:
1056838
.
35.
Mao
X
,
Zhang
X
,
Zheng
X
,
Chen
Y
,
Xuan
Z
,
Huang
P
.
Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway
.
J Nat Med
.
2021
;
75
(
3
):
590
601
.
36.
Wu
J
.
Pancreatic cancer-derived exosomes promote the proliferation, invasion, and metastasis of pancreatic cancer by the miR-3960/TFAP2A Axis
.
J Oncol
.
2022
;
2022
:
3590326
.
37.
Zhu
JL
,
Xue
WB
,
Jiang
ZB
,
Feng
W
,
Liu
YC
,
Nie
XY
, et al
.
Long noncoding RNA CDKN2B-AS1 silencing protects against esophageal cancer cell invasion and migration by inactivating the TFAP2A/FSCN1 axis
.
Kaohsiung J Med Sci
.
2022
;
38
(
12
):
1144
54
.
38.
Shi
D
,
Xie
F
,
Zhang
Y
,
Tian
Y
,
Chen
W
,
Fu
L
, et al
.
TFAP2A regulates nasopharyngeal carcinoma growth and survival by targeting HIF-1α signaling pathway
.
Cancer Prev Res
.
2014
;
7
(
2
):
266
77
.
39.
Cui
Y
,
Zhang
C
,
Ma
S
,
Guan
F
.
TFAP2A-induced SLC2A1-AS1 promotes cancer cell proliferation
.
Biol Chem
.
2021
;
402
(
6
):
717
27
.
You do not currently have access to this content.