Introduction: This study attempted to investigate how proprotein convertase subtilisin/kexin type 9 (PCSK9) influences the stemness of stomach adenocarcinoma (STAD) cells. Methods: CCK-8 and sphere-formation assays were used to detect cell viability and stemness. qRT-PCR and Western blot were used to detect PCSK9 and TEAD4 expression. The binding relationship was verified by dual-luciferase and chromatin immunoprecipitation assays. The effect of TEAD4 activating PCSK9 on the stemness of STAD cells was detected by bioinformatics, BODIPY 493/503, Oil red O, Western blot, and kits. In vivo experiments verified the role of the TEAD4/PCSK9 axis in tumor formation in nude mice. Results: PCSK9 and TEAD4 were highly expressed in STAD. PCSK9 was enriched in the fatty acid metabolism (FAM) pathway. PCSK9 activated the fatty acid metabolism and promoted the proliferation and stemness of STAD cells. TEAD4 as a transcription factor upstream of PCSK9, cell experiments revealed that knockdown of PCSK9 inhibited STAD cell stemness, whereas further addition of fatty acid inhibitors could attenuate the promoting effect on STAD cell stemness brought by STAD overexpression. Rescue experiments showed overexpressed PCSK9 exerted an inhibitory effect on the stemness of STAD cells brought by TEAD4 knockdown. The hypothesis that TEAD4/PCSK9 axis can promote STAD cell growth was confirmed by in vivo experiments. Conclusion: Transcription factor TEAD4 could activate PCSK9 to promote the stemness of STAD cells through FAM. These results added weight to the assumption that TEAD4/PCSK9 axis has the potential to be the therapeutic target that inhibits cancer stem cell in STAD.

1.
Guo
Q
,
Shi
D
,
Lin
L
,
Li
H
,
Wei
Y
,
Li
B
, et al
.
De-ubiquitinating enzymes USP21 regulate MAPK1 expression by binding to transcription factor GATA3 to regulate tumor growth and cell stemness of gastric cancer
.
Front Cell Dev Biol
.
2021
;
9
:
641981
.
2.
Yang
D
,
Yu
J
,
Han
B
,
Sun
Y
,
Mo
S
,
Hu
J
.
Long non-coding RNA expression patterns in stomach adenocarcinoma serve as an indicator of tumor mutation burden and are associated with tumor-infiltrating lymphocytes and microsatellite instability
.
Front Cell Dev Biol
.
2021
;
9
:
618313
.
3.
Gu
Z
,
Wang
L
,
Yao
X
,
Long
Q
,
Lee
K
,
Li
J
, et al
.
ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma
.
Cell Death Dis
.
2020
;
11
(
10
):
898
.
4.
Batlle
E
,
Clevers
H
.
Cancer stem cells revisited
.
Nat Med
.
2017
;
23
(
10
):
1124
34
.
5.
Shibue
T
,
Weinberg
RA
.
EMT, CSCs, and drug resistance: the mechanistic link and clinical implications
.
Nat Rev Clin Oncol
.
2017
;
14
(
10
):
611
29
.
6.
Zhang
L
,
Guo
X
,
Zhang
D
,
Fan
Y
,
Qin
L
,
Dong
S
, et al
.
Upregulated miR-132 in Lgr5(+) gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway
.
Mol Carcinog
.
2017
;
56
(
9
):
2022
34
.
7.
Liu
G
,
Guo
W
,
Qin
J
,
Lin
Z
.
OTUB2 facilitates tumorigenesis of gastric cancer through promoting kdm1a-mediated stem cell-like properties
.
Front Oncol
.
2021
;
11
:
711735
.
8.
Chen
YL
,
Wang
CY
,
Fang
JH
,
Hsu
HP
.
Serine/threonine-protein kinase 24 is an inhibitor of gastric cancer metastasis through suppressing CDH1 gene and enhancing stemness
.
Am J Cancer Res
.
2021
;
11
(
9
):
4277
93
.
9.
He
W
,
Liang
B
,
Wang
C
,
Li
S
,
Zhao
Y
,
Huang
Q
, et al
.
MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer
.
Oncogene
.
2019
;
38
(
23
):
4637
54
.
10.
Fu
Y
,
Zou
T
,
Shen
X
,
Nelson
PJ
,
Li
J
,
Wu
C
, et al
.
Lipid metabolism in cancer progression and therapeutic strategies
.
MedComm
.
2021
;
2
(
1
):
27
59
.
11.
Wu
Y
,
Zhou
Y
,
Gao
H
,
Wang
Y
,
Cheng
Q
,
Jian
S
, et al
.
LYAR promotes colorectal cancer progression by upregulating FSCN1 expression and fatty acid metabolism
.
Oxid Med Cell Longev
.
2021
;
2021
:
9979707
.
12.
Seo
J
,
Jeong
DW
,
Park
JW
,
Lee
KW
,
Fukuda
J
,
Chun
YS
.
Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells
.
Commun Biol
.
2020
;
3
(
1
):
638
.
13.
Tan
Y
,
Lin
K
,
Zhao
Y
,
Wu
Q
,
Chen
D
,
Wang
J
, et al
.
Adipocytes fuel gastric cancer omental metastasis via PITPNC1-mediated fatty acid metabolic reprogramming
.
Theranostics
.
2018
;
8
(
19
):
5452
68
.
14.
Pike
LS
,
Smift
AL
,
Croteau
NJ
,
Ferrick
DA
,
Wu
M
.
Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
.
Biochim Biophys Acta
.
2011
;
1807
(
6
):
726
34
.
15.
Ito
K
,
Carracedo
A
,
Weiss
D
,
Arai
F
,
Ala
U
,
Avigan
DE
, et al
.
A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
.
Nat Med
.
2012
;
18
(
9
):
1350
8
.
16.
Carracedo
A
,
Cantley
LC
,
Pandolfi
PP
.
Cancer metabolism: fatty acid oxidation in the limelight
.
Nat Rev Cancer
.
2013
;
13
(
4
):
227
32
.
17.
Liu
S
,
Sun
Y
,
Hou
Y
,
Yang
L
,
Wan
X
,
Qin
Y
, et al
.
A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties
.
J Hematol Oncol
.
2021
;
14
(
1
):
178
.
18.
Wu
H
,
Liu
B
,
Chen
Z
,
Li
G
,
Zhang
Z
.
MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer
.
Cell Death Dis
.
2020
;
11
(
4
):
233
.
19.
Zhang
SZ
,
Zhu
XD
,
Feng
LH
,
Li
XL
,
Liu
XF
,
Sun
HC
, et al
.
PCSK9 promotes tumor growth by inhibiting tumor cell apoptosis in hepatocellular carcinoma
.
Exp Hematol Oncol
.
2021
;
10
(
1
):
25
.
20.
Xia
XD
,
Peng
ZS
,
Gu
HM
,
Wang
M
,
Wang
GQ
,
Zhang
DW
.
Regulation of PCSK9 expression and function: mechanisms and therapeutic implications
.
Front Cardiovasc Med
.
2021
;
8
:
764038
.
21.
Xu
X
,
Cui
Y
,
Cao
L
,
Zhang
Y
,
Yin
Y
,
Hu
X
.
PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways
.
Exp Ther Med
.
2017
;
13
(
5
):
1993
9
.
22.
Piao
MX
,
Bai
JW
,
Zhang
PF
,
Zhang
YZ
.
PCSK9 regulates apoptosis in human neuroglioma u251 cells via mitochondrial signaling pathways
.
Int J Clin Exp Pathol
.
2015
;
8
(
3
):
2787
94
.
23.
Malta
TM
,
Sokolov
A
,
Gentles
AJ
,
Burzykowski
T
,
Poisson
L
,
Weinstein
JN
, et al
.
Machine learning identifies stemness features associated with oncogenic dedifferentiation
.
Cell
.
2018
;
173
(
2
):
338
54.e15
.
24.
Li
Q
,
Wu
R
,
Wu
F
,
Chen
Q
.
KMT2D promotes proliferation of gastric cancer cells: evidence from ctDNA sequencing
.
J Clin Lab Anal
.
2021
;
35
(
4
):
e23721
.
25.
Zheng
L
,
Cai
X
,
Song
J
,
Shi
H
,
Zhang
J
,
Ke
X
, et al
.
MicroRNA-30c-2-3p represses malignant progression of gastric adenocarcinoma cells via targeting ARHGAP11A
.
Bioengineered
.
2022
;
13
(
6
):
14534
44
.
26.
Sun
Q
,
Li
J
,
Li
F
,
Li
H
,
Bei
S
,
Zhang
X
, et al
.
LncRNA LOXL1-AS1 facilitates the tumorigenesis and stemness of gastric carcinoma via regulation of miR-708-5p/USF1 pathway
.
Cell Prolif
.
2019
;
52
(
6
):
e12687
.
27.
Dong
SR
,
Ju
XL
,
Yang
WZ
.
STAT5A reprograms fatty acid metabolism and promotes tumorigenesis of gastric cancer cells
.
Eur Rev Med Pharmacol Sci
.
2019
;
23
(
19
):
8360
70
.
28.
Li
FN
,
Zhang
QY
,
Li
O
,
Liu
SL
,
Yang
ZY
,
Pan
LJ
, et al
.
ESRRA promotes gastric cancer development by regulating the CDC25C/CDK1/CyclinB1 pathway via DSN1
.
Int J Biol Sci
.
2021
;
17
(
8
):
1909
24
.
29.
Gao
L
,
Xia
T
,
Qin
M
,
Xue
X
,
Jiang
L
,
Zhu
X
.
CircPTK2 suppresses the progression of gastric cancer by targeting the MiR-196a-3p/AATK Axis
.
Front Oncol
.
2021
;
11
:
706415
.
30.
Li
S
,
Zhou
T
,
Li
C
,
Dai
Z
,
Che
D
,
Yao
Y
, et al
.
High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner
.
PLoS One
.
2014
;
9
(
5
):
e97330
.
31.
Oudijk
L
,
Neuhofer
CM
,
Lichtenauer
UD
,
Papathomas
TG
,
Korpershoek
E
,
Stoop
H
, et al
.
Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations
.
Eur J Endocrinol
.
2015
;
173
(
1
):
43
52
.
32.
Tang
JY
,
Yu
CY
,
Bao
YJ
,
Chen
L
,
Chen
J
,
Yang
SL
, et al
.
TEAD4 promotes colorectal tumorigenesis via transcriptionally targeting YAP1
.
Cell Cycle
.
2018
;
17
(
1
):
102
9
.
33.
Shuai
Y
,
Ma
Z
,
Liu
W
,
Yu
T
,
Yan
C
,
Jiang
H
, et al
.
TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2
.
Mol Cancer
.
2020
;
19
(
1
):
6
.
34.
Qi
W
,
Yang
Z
,
Feng
Y
,
Li
H
,
Che
N
,
Liu
L
, et al
.
Gli1 regulates stemness characteristics in gastric adenocarcinoma
.
Diagn Pathol
.
2020
;
15
(
1
):
60
.
35.
Navarese
EP
,
Kolodziejczak
M
,
Schulze
V
,
Gurbel
PA
,
Tantry
U
,
Lin
Y
, et al
.
Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis
.
Ann Intern Med
.
2015
;
163
(
1
):
40
51
.
36.
Sabatine
MS
,
Giugliano
RP
,
Keech
AC
,
Honarpour
N
,
Wiviott
SD
,
Murphy
SA
, et al
.
Evolocumab and clinical outcomes in patients with cardiovascular disease
.
N Engl J Med
.
2017
;
376
(
18
):
1713
22
.
37.
Stoekenbroek
RM
,
Lambert
G
,
Cariou
B
,
Hovingh
GK
.
Inhibiting PCSK9 - biology beyond LDL control
.
Nat Rev Endocrinol
.
2018
;
15
(
1
):
52
62
.
38.
Sun
X
,
Essalmani
R
,
Day
R
,
Khatib
AM
,
Seidah
NG
,
Prat
A
.
Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver
.
Neoplasia
.
2012
;
14
(
12
):
1122
31
.
39.
Bonaventura
A
,
Grossi
F
,
Carbone
F
,
Vecchie
A
,
Minetti
S
,
Bardi
N
, et al
.
Serum PCSK9 levels at the second nivolumab cycle predict overall survival in elderly patients with NSCLC: a pilot study
.
Cancer Immunol Immunother
.
2019
;
68
(
8
):
1351
8
.
40.
Abdelwahed
KS
,
Siddique
AB
,
Mohyeldin
MM
,
Qusa
MH
,
Goda
AA
,
Singh
SS
, et al
.
Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor
.
Pharmacol Res
.
2020
;
158
:
104847
.
41.
He
M
,
Hu
J
,
Fang
T
,
Tang
W
,
Lv
B
,
Yang
B
, et al
.
Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with GSTP1 and suppressing the JNK signaling pathway
.
Cancer Biol Med
.
2021
;
19
(
1
):
90
103
.
42.
Chen
M
,
Huang
B
,
Zhu
L
,
Chen
K
,
Liu
M
,
Zhong
C
.
Structural and functional overview of TEAD4 in cancer biology
.
Onco Targets Ther
.
2020
;
13
:
9865
74
.
43.
Lim
B
,
Park
JL
,
Kim
HJ
,
Park
YK
,
Kim
JH
,
Sohn
HA
, et al
.
Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer
.
Carcinogenesis
.
2014
;
35
(
5
):
1020
7
.
44.
Zhu
C
,
Li
L
,
Zhang
Z
,
Bi
M
,
Wang
H
,
Su
W
, et al
.
A non-canonical role of YAP/TEAD is required for activation of estrogen-regulated enhancers in breast cancer
.
Mol Cell
.
2019
;
75
(
4
):
791
806 e8
.
45.
Tsinias
G
,
Nikou
S
,
Mastronikolis
N
,
Bravou
V
,
Papadaki
H
.
Expression and prognostic significance of YAP, TAZ, TEAD4 and p73 in human laryngeal cancer
.
Histol Histopathol
.
2020
;
35
(
9
):
983
95
.
46.
Hu
Y
,
Mu
H
,
Deng
Z
.
The transcription factor TEAD4 enhances lung adenocarcinoma progression through enhancing PKM2 mediated glycolysis
.
Cell Biol Int
.
2021
;
45
(
10
):
2063
73
.
You do not currently have access to this content.