Background: The Gamisoyo-san (GSS) has been used for ­improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). Methods: ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. Results: GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-β-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl channel (anoctamin1) currents. Conclusion: GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions.

1.
Mantani N, Hisanaga A, Kogure T, Kita T, Shimada Y, Terasawa K: Four cases of panic disorder successfully treated with Kampo (Japanese herbal) medicines: Kami-shoyo-san and Hange-koboku-to. Psychiatry Clin Neurosci 2002; 56: 617–620.
[PubMed]
2.
Yamada K, Kanba S: Herbal medicine (kami-shoyo-san) in the treatment of premenstrual dysphoric disorder. J Clin Psychopharmacol 2002; 22: 442.
[PubMed]
3.
Park DM, Kim SH, Park YC, Kang WC, Lee SR, Jung IC: The comparative clinical study of efficacy of Gamisoyo-San (Jiaweixiaoyaosan) on generalized anxiety disorder according to differently manufactured preparations: multicenter, randomized, double blind, placebo controlled trial. J Ethnopharmacol 2014; 158(pt A):11–17.
[PubMed]
4.
Lee JG, Shin BS, Lee YC, Park SW, Kim YH: Clinical effectiveness of the Kampo medicine kamishoyosan for adjunctive treatment of tardive dyskinesia in patients with schizophrenia: a 16-week open trial. Psychiatry Clin Neurosci 2007; 61: 509–514.
[PubMed]
5.
Yamada K, Kanba S: Effectiveness of kamishoyosan for premenstrual dysphoric disorder: open-labeled pilot study. Psychiatry Clin Neurosci 2007; 61: 323–325.
[PubMed]
6.
Terauchi M, Hiramitsu S, Akiyoshi M, Owa Y, Kato K, Obayashi S, Matsushima E, Kubota T: Effects of three Kampo formulae: Tokishakuyakusan (TJ-23), kamishoyosan (TJ-24), and keishibukuryogan (TJ-25) on Japanese peri- and postmenopausal women with sleep disturbances. Arch Gynecol Obstet 2011; 284: 913–921.
[PubMed]
7.
Chien SC, Chang WC, Lin PH, Chang WP, Hsu SC, Chang JC, Wu YC, Pei JK, Lin CH: A Chinese herbal medicine, jia-wei-xiao-yao-san, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. ScientificWorldJournal 2014; 2014: 217525.
[PubMed]
8.
Hwang GS: Effects of Gamisoyosan (GS) on LDL oxidation in RAW 264.7 cell. Korean J Orient Prev Med Soc 2001; 5: 134–143.
9.
Lee SH, Lee JM, Cho JH, Lee CH, Jang JB, Lee KS: Antioxidant and neuroprotective effects of gamisoyo-san. J Orient Obstet Gynecol 2010; 23: 1–13.
10.
Qu Y, Gan HQ, Mei QB, Liu L: Study on the effect of Jia-Wei-Xiao-Yao-San decoction on patients with functional dyspepsia. Phytother Res 2010; 24: 245–248.
[PubMed]
11.
Liu HN, Ohya S, Nishizawa Y, Sawamura K, Iino S, Syed MM, Goto K, Imaizumi Y, Nakayama S: Serotonin augments gut pacemaker activity via 5-HT3 receptors. PLoS One 2011; 6:e24928.
[PubMed]
12.
Kim HJ, Kim BJ: Naringenin inhibits pacemaking activity in interstitial cells of Cajal from murine small intestine. Integr Med Res 2017; 6: 149–155.
[PubMed]
13.
Choi KM, Gibbons SJ, Nguyen TV, Stoltz GJ, Lurken MS, Ordog T, Szurszewski JH, Farrugia G: Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 2008; 135: 2055–2064.
[PubMed]
14.
Wang XY, Huizinga JD, Diamond J, Liu LW: Loss of intramuscular and submuscular interstitial cells of Cajal and associated enteric nerves is related to decreased gastric emptying in streptozotocin-induced diabetes. Neurogastroenterol Motil 2009; 21: 1095.e92.
[PubMed]
15.
Mogami S, Suzuki H, Tsugawa H, Fukuhara S, Hibi T: Impaired heme oxygenase-1 induction in the gastric antrum induces disruption of the interstitial cells of Cajal network in a rat model of streptozotocin-induced diabetes. Neurogastroenterol Motil 2013; 25: 609.e465.
[PubMed]
16.
Suzuki S, Suzuki H, Horiguchi K, Tsugawa H, Matsuzaki J, Takagi T, Shimojima N, Hibi T: Delayed gastric emptying and disruption of the interstitial cells of Cajal network after gastric ischaemia and reperfusion. Neurogastroenterol Motil 2010; 22: 585–593.e126.
[PubMed]
17.
Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW: Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 2005; 129: 1504–1517.
[PubMed]
18.
Kim BJ, Lee GS, Kim HW: Involvement of transient receptor potential melastatin type 7 channels on Poncirus fructus-induced depolarizations of pacemaking activity in interstitial cells of Cajal from murine small intestine. Integr Med Res 2013; 2: 62–69.
[PubMed]
19.
Kim BJ, Park KJ, Kim HW, Choi S, Jun JY, Chang IY, Jeon JH, So I, Kim SJ: Identification of TRPM7 channels in human intestinal interstitial cells of Cajal. World J Gastroenterol 2009; 15: 5799–5804.
[PubMed]
20.
Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM: A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 2009; 587(pt 20):4905–4918.
[PubMed]
21.
Inoue R, Chen S: Physiology of muscarinic receptor-operated nonselective cation channels in guinea-pig ileal smooth muscle. Exs 1993; 66: 261–268.
[PubMed]
22.
Okamoto H, Unno T, Arima D, Suzuki M, Yan HD, Matsuyama H, Nishimura M, Komori S: Phospholipase C involvement in activation of the muscarinic receptor-operated cationic current in Guinea pig ileal smooth muscle cells. J Pharmacol Sci 2004; 95: 203–213.
[PubMed]
23.
Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B: Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 2000; 279:C529–C539.
[PubMed]
24.
Haga T: Molecular properties of muscarinic acetylcholine receptors. Proc Jpn Acad Ser B Phys Biol Sci 2013; 89: 226–256.
[PubMed]
25.
Komori S, Kawai M, Takewaki T, Ohashi H: GTP-binding protein involvement in membrane currents evoked by carbachol and histamine in guinea-pig ileal muscle. J Physiol 1992; 450: 105–126.
[PubMed]
26.
Ogata R, Inoue Y, Nakano H, Ito Y, Kitamura K: Oestradiol-induced relaxation of rabbit basilar artery by inhibition of voltage-dependent Ca channels through GTP-binding protein. Br J Pharmacol 1996; 117: 351–359.
[PubMed]
27.
Oude Weernink PA, Han L, Jakobs KH, Schmidt M: Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta 2007; 1768: 888–900.
[PubMed]
28.
Park CG, Wu MJ, Hong C, Jo JY, Jiao HY, Park H, Jun JY, Choi S: Regulation of intracellular calcium by endoplasmic reticulum proteins in small intestinal interstitial cells of Cajal. J Neurogastroenterol Motil 2018; 24: 128–137.
[PubMed]
29.
Ward SM: Interstitial cells of Cajal in enteric neurotransmission. Gut 2000; 47(suppl 4): iv40–iv43.
[PubMed]
30.
Shahi PK, Choi S, Zuo DC, Kim MY, Park CG, Kim YD, Lee J, Park KJ, So I, Jun JY: The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J Gastroenterol 2014; 49: 1001–1010.
[PubMed]
31.
Choi ES, Lee IS: Experimental study on effects of Soyosan and Kamisoyo-san. J Orient Obstet Gynecol 1996; 9: 41–53.
32.
Kim JY, Kwak DH, Ju EJ, Kim SM, Lee DH, Keum KS, Lee SU, Jung KY, Seo BB, Choo YK: Effects of Gamisoyosan on in vitro fertilization and ovulation of stressed mice by electric shock. Arch Pharm Res 2004; 27: 1168–1176.
[PubMed]
33.
Park SW, Kim YK, Lee JG, Kim SH, Kim JM, Yoon JS, Park YK, Lee YK, Kim YH: Antidepressant-like effects of the traditional Chinese medicine kami-shoyo-san in rats. Psychiatry Clin Neurosci 2007; 61: 401–406.
[PubMed]
34.
Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A: W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995; 373: 347–349.
[PubMed]
35.
Sanders KM: A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996; 111: 492–515.
[PubMed]
36.
Koh SD, Sanders KM, Ward SM: Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 1998; 513(pt 1):203–213.
[PubMed]
37.
Vanderwinden JM, Rumessen JJ, Bernex F, Schiffmann SN, Panthier JJ: Distribution and ultrastructure of interstitial cells of Cajal in the mouse colon, using antibodies to Kit and Kit(W-lacZ) mice. Cell Tissue Res 2000; 302: 155–170.
[PubMed]
38.
Gomez-Pinilla PJ, Gibbons SJ, Sarr MG, et al: Changes in interstitial cells of Cajal with age in the human stomach and colon. Neurogastroenterol Motil 2011; 23: 36–44.
[PubMed]
39.
Lyford GL, He CL, Soffer E, et al: Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation. Gut 2002; 51: 496–501.
[PubMed]
40.
Lee SM, Kim N, Jo HJ, Park JH, Nam RH, Lee HS, Kim HJ, Lee MY, Kim YS, Lee DH: Comparison of changes in the interstitial cells of Cajal and neuronal nitric oxide synthase-positive neuronal cells with aging between the ascending and descending colon of F344 rats. J Neurogastroenterol Motil 2017; 23: 592–605.
[PubMed]
41.
Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY: Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 2009; 106: 21413–21418.
[PubMed]
42.
O'Donnell AM, Coyle D, Puri P: Decreased expression of Kv7 channels in Hirchsprung’s disease. J Pediatr Surg 2017; 52: 1177–1181.
[PubMed]
43.
Zhu MH, Sung TS, Kurahashi M, O'Kane LE, O’Driscoll K, Koh SD, Sanders KM: Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1037–G1046.
[PubMed]
44.
Hong NR, Park HS, Ahn TS, Kim HJ, Ha KT, Kim BJ: Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine. J Ginseng Res 2015; 39: 314–321.
[PubMed]
45.
Tomuschat C, O’Donnell AM, Coyle D, Puri P: Reduced expression of voltage-gated Kv11.1 (hERG) K(+) channels in aganglionic colon in Hirschsprung’s disease. Pediatr Surg Int 2016; 32: 9–16.
[PubMed]
46.
Wright GW, Parsons SP, Loera-Valencia R, Wang XY, Barajas-López C, Huizinga JD: Cholinergic signalling-regulated KV7.5 currents are expressed in colonic ICC-IM but not ICC-MP. Pflugers Arch 2014; 466: 1805–1818.
[PubMed]
47.
Parsons SP, Huizinga JD: Transient outward potassium current in ICC. Am J Physiol Gastrointest Liver Physiol 2010; 298:G456–G466.
[PubMed]
48.
Kim YC, Suzuki H, Xu WX, Choi W, Kim SH, Lee SJ: Ca2+-activated K+ current in freshly isolated c-Kit positive cells in guinea-pig stomach. J Korean Med Sci 2009; 24: 384–391.
[PubMed]
49.
White EJ, Park SJ, Foster JA, Huizinga JD: Ether-a-go-go-related gene 3 is the main candidate for the E-4031-sensitive potassium current in the pacemaker interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2008; 295:G691–G699.
[PubMed]
50.
Kito Y, Suzuki H: Role of K(+) channels in the regulation of electrical spontaneous activity of the mouse small intestine. Pflugers Arch 2007; 455: 505–514.
[PubMed]
51.
Zhu Y, Ye J, Huizinga JD: Clotrimazole-sensitive K+ currents regulate pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1715–G1725.
[PubMed]
52.
Suzuki H: The application of the rome IV criteria to functional esophagogastroduodenal disorders in Asia. J Neurogastroenterol Motil 2017; 23: 325–333.
[PubMed]
53.
Togawa K, Matsuzaki J, Kobayakawa M, Fukushima Y, Suzaki F, Kasugai K, Nishizawa T, Naito Y, Hayakawa T, Kamiya T, Andoh T, Yoshida H, Tokura Y, Nagata H, Mori M, Kato K, Hosoda H, Takebayashi T, Miura S, Uemura N, Joh T, Hibi T, Suzuki H: Association of baseline plasma des-acyl ghrelin level with the response to rikkunshito in patients with functional dyspepsia. J Gastroenterol Hepatol 2016; 31: 334–341.
[PubMed]
54.
Suzuki H, Matsuzaki J, Fukushima Y, Suzaki F, Kasugai K, Nishizawa T, Naito Y, Hayakawa T, Kamiya T, Andoh T, Yoshida H, Tokura Y, Nagata H, Kobayakawa M, Mori M, Kato K, Hosoda H, Takebayashi T, Miura S, Uemura N, Joh T, Hibi T, Tack J; Rikkunshito study group: Randomized clinical trial: rikkunshito in the treatment of functional dyspepsia – a multicenter, double-blind, randomized, placebo-controlled study. Neurogastroenterol Motil 2014; 26: 950–961.
[PubMed]
55.
Suzuki H, Inadomi JM, Hibi T: Japanese herbal medicine in functional gastrointestinal disorders. Neurogastroenterol Motil 2009; 21: 688–696.
[PubMed]
You do not currently have access to this content.