Background and Aims: Hexanoyl (Hx:C6) group-modified alkaline-treated gelatin porous film (HAG) is a newly developed degradable hydrogel characterized by strong adhesiveness and high affinity for vascular endothelial growth factor (VEGF). The aim of this study was to clarify the effect of HAG sheets on the healing process of post-endoscopic submucosal dissection (ESD) porcine gastric artificial ulcers. Methods: (1) To evaluate the adhesiveness of HAG sheets over time, we performed ESD to create 1 artificial ulcer and covered the lesion with 1 HAG sheet using 1 miniature swine. We observed 2 ulcers by endoscopic and microscopic examinations. (2) To examine the effect of HAG sheets on post-ESD ulcer healing, we performed ESD using 5 miniature swine. The artificial ulcers were covered with HAG sheets, or left uncovered after ESD (day 0), followed by macroscopic and microscopic examinations. On days 7 and 14, we observed 2 ulcers by endoscopic examinations. On day 14, the animals were sacrificed, and histological examination was performed on the 3 stomachs that could be extirpated. Results: (1) On day 7, adhesion of HAG sheets was observed. (2) Gastric ulcer area on day 7 was significantly larger in the covered ulcers than in the non-covered ulcers (p = 0.046). On day 14, although there was no significant difference in ulcer area irrespective of covering (p = 0.357), the covered ulcers tended to repair less fold convergence than non-covered ulcers. The covered ulcer sheets significantly decreased inflammatory cell infiltration (p = 0.011), but significantly increased the abundance of macrophages (p = 0.033), in submucosal layers. Also, the abundance of alpha-smooth muscle actin-positive cells in submucosal layers of the covered ulcers was significantly reduced (p = 0.044), leading to a decrease in collagen accumulation. In addition, fibrosis and atrophy of the muscularis propria were significantly lower for covered ulcers than for non-covered ulcers. Furthermore, microvessels and VEGF-positive cells were significantly more abundant in the submucosal layers of the covered ulcers (p < 0.001 and p = 0.024, respectively). Conclusions: HAG sheets induced post-ESD ulcer healing with less submucosal inflammation and muscularis propria injury and have the potential to decrease excess scarring.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.