Background: The gut-liver-axis presents the pathophysiological hallmark for multiple liver diseases and has been proposed to be modulated during stress and shock. Access to the gut-liver-axis needs crossing of the mucus and gut-vascular barrier. The role of β-adrenoreceptor-activation for both barriers has not been defined and is characterized here. Methods: Splanchnic β-adrenergic stimulation was achieved by chronic intraperitoneal application of isoproterenol via alzet-pump in vivo. The intestinal permeability and gut-vascular barrier function was assessed in ileal loop experiments. The extravasation of predefined sizes of fluorescence isothiocyanate (FITC)-dextran molecules in ileal microcirculation was evaluated by intravital confocal laser endomicroscopy in vivo. Mucus parameters thickness, goblet cell count and mucin-expression were assessed by stereomicroscopy, immunostaining and RNA-sequencing respectively. Ileal lamina propria (LP) as well as mesenteric lymph node mononuclear cells was assessed by FACS. Results: Healthy mice lack translocation of 4 kDa-FITC-dextran from the small intestine to the liver, whereas isoproterenol-treated mice demonstrate pathological translocation (PBT). Mucus layer is reduced in thickness with loss of goblet-cells and mucin-2-staining and -expression in isoproterenol-treated animals under standardized gnotobiotic conditions. Isoproterenol disrupts the gut vascular barrier displaying Ileal extravasation of large-sized 70- and 150 kDa-FITC-dextran. This pathological endothelial permeability and accessibility induced by isoproterenol associates with an augmented expression of plasmalemmal-vesicle-associated-protein-1 in intestinal vessel. Ileal LP after isoproterenol treatment contains more CD11c+-dendritic cells (DC) with increased appearance of CCR7+ DC in mesenteric lymph nodes. Conclusions: Isoproterenol impairs the intestinal muco-epithelial and endothelial-vascular barrier promoting PBT to the liver. This barrier dysfunction on multiple levels potentially can contribute to liver injury induced by catecholamines during states of increased β-adrenergic drive.

1.
Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV: Multiple-organ-failure syndrome. Arch Surg. 1986 Feb;121(2):196–208.
2.
Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care. 2017 Apr;23(2):143–8.
3.
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis. 2017 Oct;1863(10 10 Pt B):2574–83.
4.
Baker JW, Deitch EA, Li M, Berg RD, Specian RD. Hemorrhagic shock induces bacterial translocation from the gut. J Trauma. 1988 Jul;28(7):896–906.
5.
Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol. 2017 Nov;67(5):1084–103.
6.
Coker RH, Krishna MG, Lacy DB, Allen EJ, Wasserman DH. Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise. J Appl Physiol (1985). 1997 Apr;82(4):1244–9.
7.
Cox HS, Kaye DM, Thompson JM, Turner AG, Jennings GL, Itsiopoulos C, Esler MD: Regional sympathetic nervous activation after a large meal in humans. Clin Sci (Lond). 1995 Aug;89(2):145–54.
8.
Aliyev A, Seyedghodraty M, Mohammadi M, Mirzaei F, Marahem M. Impact of high-fat diet and hypoxia on the serum levels of main vasoconstrictors in male rabbits. J Cardiovasc Thorac Res. 2017;9(2):90–4.
9.
Blanco-Rivero J, de las Heras N, Martín-Fernández B, Cachofeiro V, Lahera V, Balfagón G. Rosuvastatin restored adrenergic and nitrergic function in mesenteric arteries from obese rats. Br J Pharmacol. 2011 Jan;162(1):271–85.
10.
Konturek PC, Brzozowski T, Konturek SJ: Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011 Dec;62(6):591–9.
11.
Yang S, Koo DJ, Zhou M, Chaudry IH, Wang P. Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol. 2000 Dec;279(6):G1274–81.
12.
Dietrich P, Moleda L, Kees F, Müller M, Straub RH, Hellerbrand C, et al. Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: impact of exogenous neuropeptide Y. J Hepatol. 2013 Feb;58(2):254–61.
13.
Moerer O, Schmid A, Hofmann M, Herklotz A, Reinhart K, Werdan K, et al. Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use. Intensive Care Med. 2002 Oct;28(10):1440–6.
14.
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar;43(3):304–77.
15.
Xing XZ, Wang HJ, Huang CL, Yang QH, Qu SN, Zhang H, et al. Prognosis of patients with shock receiving vasopressors. World J Emerg Med. 2013;4(1):59–62.
16.
Habes QL, van Ede L, Gerretsen J, Kox M, Pickkers P. Norepinephrine Contributes to Enterocyte Damage in Septic Shock Patients: A Prospective Cohort Study. Shock. 2018 Feb;49(2):137–43.
17.
Piton G, Cypriani B, Regnard J, Patry C, Puyraveau M, Capellier G. Catecholamine use is associated with enterocyte damage in critically ill patients. Shock. 2015 May;43(5):437–42.
18.
Mori K, Morisaki H, Yajima S, Suzuki T, Ishikawa A, Nakamura N, et al. Beta-1 blocker improves survival of septic rats through preservation of gut barrier function. Intensive Care Med. 2011 Nov;37(11):1849–56.
19.
Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013 Oct;310(16):1683–91.
20.
Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015 Nov;350(6262):830–4.
21.
Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):352–61.
22.
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol. 2018 Jan 2;10(1):pii:a029314.
23.
Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 2008 Sep;105(39):15064–9.
24.
Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun. 2015 Sep;6(1):8292.
25.
Johansson ME. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS One. 2012;7(7):e41009.
26.
Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015 Jan;8(1):198–210.
27.
Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015 Jul;8(4):712–9.
28.
Birchenough GM, Nyström EE, Johansson ME, Hansson GC. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science. 2016 Jun;352(6293):1535–42.
29.
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017 Dec;17(12):761–73.
30.
Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med. 2006 Mar;203(3):497–500.
31.
Skonieczna-Żydecka K, Marlicz W, Misera A, Koulaouzidis A, Łoniewski I. Microbiome-The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. J Clin Med. 2018 Dec;7(12):7.
32.
Gennari R, Alexander JW, Eaves-Pyles T. Effect of different combinations of dietary additives on bacterial translocation and survival in gut-derived sepsis. JPEN J Parenter Enteral Nutr. 1995 Jul-Aug;19(4):319–25.
33.
Claesson-Welsh L. Vascular permeability–the essentials. Ups J Med Sci. 2015;120(3):135–43.
34.
Saumon G, Basset G, Bouchonnet F, Crone C. cAMP and beta-adrenergic stimulation of rat alveolar epithelium. Effects on fluid absorption and paracellular permeability. Pflugers Arch. 1987 Nov;410(4-5):464–70.
35.
Baumer Y, Spindler V, Werthmann RC, Bünemann M, Waschke J. Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced barrier breakdown. J Cell Physiol. 2009 Sep;220(3):716–26.
36.
He P, Wang J, Zeng M. Leukocyte adhesion and microvessel permeability. Am J Physiol Heart Circ Physiol. 2000 May;278(5):H1686–94.
37.
Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE: Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Physiol. 1998;274:H1885–94.
38.
Zink S, Rösen P, Lemoine H. Micro- and macrovascular endothelial cells in beta-adrenergic regulation of transendothelial permeability. Am J Physiol. 1995 Nov;269(5 Pt 1):C1209–18.
39.
Hordijk PL, Anthony E, Mul FP, Rientsma R, Oomen LC, Roos D. Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci. 1999 Jun;112(Pt 12):1915–23.
40.
Spindler V, Waschke J: Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions. Microcirculation 2011;18:118–27.
41.
Ding Z, Li S, Jiang M, Wu Z. Suppression by isoproterenol of endothelial cell morphology and barrier function changes induced by platelet-activating factor. Inflammation. 1994 Oct;18(5):489–98.
42.
Ding Z, Li S, Wu Z. Inhibitory effects of isoproterenol on PAF-induced endothelial cell permeability and morphological changes. Sci China C Life Sci. 1996 Feb;39(1):80–6.
43.
Juliette Mouries IS, Edina Hot, Alessandra Silvestri, Marcel Sorribas Olivera, Erika Mileti, Reiner Weist, Luciano Adorini, Giuseppe Penna and Maria Rescigno: Microbiota-dependent gut vascular barrier disruption is required for NASH development: protective role of FXR activation by obeticholic acid. J Hepatol 2018;revision after 1st submission pending.
44.
Sorribas M, Yilmaz B, Stutz D, Wotzkow C, Spadoni I, Rescigno M, Macpherson A, Wiest R. Intestinal mucus and gut-vascular barrier in liver cirrhosis: Entry sites for bacterial translocation from the gut to the liver J Hepatology 2018;2nd Revision pending.
45.
Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014 Jul;260(1):8–20.
46.
Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015 Feb;16(2):164–77.
47.
Sodhi CP, Neal MD, Siggers R, Sho S, Ma C, Branca MF, et al. Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology. 2012 Sep;143(3):708–718.e5.
48.
Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010 May;6(5):e1000902.
49.
Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006 Jul;131(1):117–29.
50.
Al-Sawalha N, Pokkunuri I, Omoluabi O, Kim H, Thanawala VJ, Hernandez A, et al. Epinephrine Activation of the β2-Adrenoceptor Is Required for IL-13-Induced Mucin Production in Human Bronchial Epithelial Cells. PLoS One. 2015 Jul;10(7):e0132559.
51.
Kamachi A, Munakata M, Nasuhara Y, Nishimura M, Ohtsuka Y, Amishima M, et al. Enhancement of goblet cell hyperplasia and airway hyperresponsiveness by salbutamol in a rat model of atopic asthma. Thorax. 2001 Jan;56(1):19–24.
52.
Takahashi K, Mizuno H, Ohno H, Kai H, Isohama Y, Takahama K, et al. Effects of SS320A, a new cysteine derivative, on the change in the number of goblet cells induced by isoproterenol in rat tracheal epithelium. Jpn J Pharmacol. 1998 May;77(1):71–7.
53.
Castagliuolo I, Lamont JT, Qiu B, Fleming SM, Bhaskar KR, Nikulasson ST, et al. Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells. Am J Physiol. 1996 Nov;271(5 Pt 1):G884–92.
54.
Pfeiffer CJ, Qiu B, Lam SK. Reduction of colonic mucus by repeated short-term stress enhances experimental colitis in rats. J Physiol Paris. 2001 Jan-Dec;95(1-6):81–7.
55.
Yoshida T, Yamashita M, Horimai C, Hayashi M. Kruppel-like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity. J Biol Chem. 2014 Sep;289(38):26107–18.
56.
Chen H, Liu D, Yang Z, Sun L, Deng Q, Yang S, et al. Adrenergic signaling promotes angiogenesis through endothelial cell-tumor cell crosstalk. Endocr Relat Cancer. 2014 Oct;21(5):783–95.
57.
Soeda J, Mouralidarane A, Ray S, Novelli M, Thomas S, Roskams T, et al. The β-adrenoceptor agonist isoproterenol rescues acetaminophen-injured livers through increasing progenitor numbers by Wnt in mice. Hepatology. 2014 Sep;60(3):1023–34.
58.
Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development. 2002 Jun;129(11):2619–28.
59.
van Es JH, de Geest N, van de Born M, Clevers H, Hassan BA. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun. 2010 May;1(1):18.
60.
van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71(1):241–60.
61.
Takenaka MC, Guereschi MG, Basso AS. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system. Semin Immunopathol. 2017 Feb;39(2):165–76.
62.
Yanagawa Y, Matsumoto M, Togashi H. Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain Behav Immun. 2011 Oct;25(7):1427–33.
63.
Maestroni GJ. Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J Immunol. 2000 Dec;165(12):6743–7.
64.
McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012 Mar;483(7389):345–9.
65.
Pérez-Paramo M, Muñoz J, Albillos A, Freile I, Portero F, Santos M, et al. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology. 2000 Jan;31(1):43–8.
You do not currently have access to this content.