Background/Aims: Increased oxidative stress and decreased immune cell apoptosis have been reported to be important factors in the pathogenesis of Crohn’s disease (CD). Our aim was to characterize the genetic expression of molecules implicated in the regulation of oxidative stress and apoptosis in peripheral white mononuclear cells of 18 healthy volunteers (controls) and 20 patients at the onset of CD (active CD [aCD]): 10 who achieved remission (inactive CD [iCD]) and 10 who did not present a complete and deep response to treatment (aCD-T). Methods: mRNA expression was measured by the Agena MassARRAY quantitative gene expression analysis application. The genes analyzed were Fas-receptor (FASR), Fas-ligand (FASL), signal transducer and activator of transcription 1 (STAT1), nuclear factor kappa-light-chain-­enhancer of activated B cells (NFKB1), apoptosis signal-regulating kinase 1 (ASK1), serine/threonine-protein kinase H1 (PSKH1), ATP-binding cassette sub-family B1 (ABCB1) and peptidylprolyl isomerase D (PPID). Results: During a CD flare, we found specific upregulated expression of the genes STAT1 and PSKH1, whereas ABCB1 and FASL were downregulated. In the patients with iCD, FASR and NFKB1 were upregulated. The expression levels of NFKB1, STAT1 and ABCB1 did not show any difference in patients with aCD at the onset of the disease and after treatment (aCD-T). The expression levels of PPID and ASK1 did not show any differences in the patients with aCD, iCD and the controls. We have also reviewed the cellular function and role of these genes in CD. Conclusions: These findings contribute to improving the understanding of the pathogenesis of CD and highlight potential genes involved.

1.
Rezaie A, Parker RD, Abdollahi M: Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 2007; 52: 2015–2021.
2.
Kruidenier L, Verspaget HW: Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease – radicals or ridiculous? Aliment Pharmacol Ther 2002; 16: 1997–2015.
3.
Eder P, Lykowska-Szuber L, Krela-Kazmierczak I, Stawczyk-Eder K, Iwanik K, Majewski P, Sterzynska K, Zabel M, Linke K: Disturbances in apoptosis of lamina propria lymphocytes in Crohn’s disease. Arch Med Sci 2015; 11: 1279–1285.
4.
Doering J, Begue B, Lentze MJ, Rieux-Laucat F, Goulet O, Schmitz J, Cerf-Bensussan N, Ruemmele FM: Induction of T lymphocyte apoptosis by sulphasalazine in patients with Crohn’s disease. Gut 2004; 53: 1632–1638.
5.
Herrlich P, Bohmer FD: Redox regulation of signal transduction in mammalian cells. Biochem Pharmacol 2000; 59: 35–41.
6.
Adler V, Yin Z, Tew KD, Ronai Z: Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999; 18: 6104–6111.
7.
Beltran B, Nos P, Dasi F, Iborra M, Bastida G, Martinez M, O’Connor JE, Saez G, Moret I, Ponce J: Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naive and treated Crohn’s disease. Inflamm Bowel Dis 2010; 16: 76–86.
8.
Iborra M, Moret I, Rausell F, Bastida G, Aguas M, Cerrillo E, Nos P, Beltran B: Role of oxidative stress and antioxidant enzymes in Crohn’s disease. Biochem Soc Trans 2011; 39: 1102–1106.
9.
Moret-Tatay I, Iborra M, Cerrillo E, Tortosa L, Nos P, Beltran B: Possible biomarkers in blood for Crohn’s disease: oxidative stress and microRNAs-current evidences and further aspects to Unravel. Oxid Med Cell Longev 2016; 2016: 2325162.
10.
Chovolou Y, Watjen W, Kampkotter A, Kahl R: Resistance to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in rat hepatoma cells expressing TNF-alpha is linked to low antioxidant enzyme expression. J Biol Chem 2003; 278: 29626–29632.
11.
Yoo JH, Erzurum SC, Hay JG, Lemarchand P, Crystal RG: Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress. J Clin Invest 1994; 93: 297–302.
12.
Nenoi M, Ichimura S, Mita K, Yukawa O, Cartwright IL: Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res 2001; 61: 5885–5894.
13.
Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, Frenzel H, King K, Hasselmeyer A, MacPherson AJ, et al: Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001 357: 1925–1928.
14.
Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, Brant SR, Caprilli R, Colombel JF, Gasche C, Geboes K, et al: Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 montreal world congress of gastroenterology. Can J Gastroenterol 2005; 19(suppl A):A5–A36.
15.
Harvey RF, Bradshaw MJ: Measuring Crohn’s disease activity. Lancet 1980; 1: 1134–1135.
16.
Rimola J, Rodriguez S, Garcia-Bosch O, Ordas I, Ayala E, Aceituno M, Pellise M, Ayuso C, Ricart E, Donoso L, et al: Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn’s disease. Gut 2009; 58: 1113–1120.
17.
Mary JY, Modigliani R: Development and validation of an endoscopic index of the severity for Crohn’s disease: a prospective multicentre study. Groupe d’Etudes Therapeutiques des Affections Inflammatoires du Tube Digestif (GETAID). Gut 1989; 30: 983–989.
18.
Chen L, Park SM, Turner JR, Peter ME: Cell death in the colonic epithelium during inflammatory bowel diseases: CD95/Fas and beyond. Inflamm Bowel Dis 2010; 16: 1071–1076.
19.
Ehrenschwender M, Wajant H: The role of fasL and fas in health and disease. Adv Exp Med Biol 2009; 647: 64–93.
20.
Krammer PH: CD95’s deadly mission in the immune system. Nature 2000; 407: 789–795.
21.
Krammer PH, Arnold R, Lavrik IN: Life and death in peripheral T cells. Nat Rev Immunol 2007; 7: 532–542.
22.
Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC, Park AY, Yin Q, Damko E, Jang SB, Raunser S, et al: The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17: 1324–1329.
23.
Kim H, Kim YN, Kim H, Kim CW: Oxidative stress attenuates Fas-mediated apoptosis in Jurkat T cell line through Bfl-1 induction. Oncogene 2005; 24: 1252–1261.
24.
Boirivant M, Marini M, Di Felice G, Pronio AM, Montesani C, Tersigni R, Strober W: Lamina propria T cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 1999; 116: 557–565.
25.
Niessner M, Volk BA: Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clin Exp Immunol 1995; 101: 428–435.
26.
Wu X, Shao F, Yang Y, Gu L, Zheng W, Wu X, Gu Y, Shu Y, Sun Y, Xu Q: Epigallocatechin-3-gallate sensitizes IFN-γ-stimulated CD4+ T cells to apoptosis via alternative activation of STAT1. Int Immunopharmacol 2014; 23: 434–441.
27.
Zhong Z, Wen Z, Darnell JE Jr: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264: 95–98.
28.
Vignais ML, Sadowski HB, Watling D, Rogers NC, Gilman M: Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol Cell Biol 1996; 16: 1759–1769.
29.
Gerhartz C, Heesel B, Sasse J, Hemmann U, Landgraf C, Schneider-Mergener J, Horn F, Heinrich PC, Graeve L: Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem 1996; 271: 12991–12998.
30.
Sampath D, Castro M, Look DC, Holtzman MJ: Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. J Clin Invest 1999; 103: 1353–1361.
31.
Yokota A, Narazaki M, Shima Y, Murata N, Tanaka T, Suemura M, Yoshizaki K, Fujiwara H, Tsuyuguchi I, Kishimoto T: Preferential and persistent activation of the STAT1 pathway in rheumatoid synovial fluid cells. J Rheumatol 2001; 28: 1952–1959.
32.
Schreiber S, Rosenstiel P, Hampe J, Nikolaus S, Groessner B, Schottelius A, Kuhbacher T, Hamling J, Folsch UR, Seegert D: Activation of signal transducer and activator of transcription (STAT) 1 in human chronic inflammatory bowel disease. Gut 2002; 51: 379–385.
33.
Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML, Bayless TM, Parmigiani G, Chakravarti S: Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis 2007; 13: 807–821.
34.
Muraro D, Simmons A: An integrative analysis of gene expression and molecular interaction data to identify dys-regulated sub-networks in inflammatory bowel disease. BMC bioinformatics 2016; 17: 42.
35.
Visekruna A, Joeris T, Seidel D, Kroesen A, Loddenkemper C, Zeitz M, Kaufmann SH, Schmidt-Ullrich R, Steinhoff U: Proteasome-mediated degradation of IkappaBalpha and processing of p105 in Crohn disease and ulcerative colitis. J Clin Invest 2006; 116: 3195–3203.
36.
Oh J, Kim SH, Ahn S, Lee CE: Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-κB and mitochondrial Bfl-1 in leukemic T cells. J Immunol 2012; 189: 5561–5571.
37.
Borm ME, van Bodegraven AA, Mulder CJ, Kraal G, Bouma G: A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int J Immunogenet 2005; 32: 401–405.
38.
Andersen V, Christensen J, Ernst A, Jacobsen BA, Tjonneland A, Krarup HB, Vogel U: Polymorphisms in NF-κB, PXR, LXR, PPARγ and risk of inflammatory bowel disease. World J Gastroenterol 2011; 17: 197–206.
39.
Aiba Y, Yamazaki K, Nishida N, Kawashima M, Hitomi Y, Nakamura H, Komori A, Fuyuno Y, Takahashi A, Kawaguchi T, et al: Disease susceptibility genes shared by primary biliary cirrhosis and Crohn’s disease in the Japanese population. J Hum Genet 2015; 60: 525–531.
40.
Luo JL, Kamata H, Karin M: IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy. J Clin Invest 2005; 115: 2625–2632.
41.
Hayakawa Y, Hirata Y, Nakagawa H, Sakamoto K, Hikiba Y, Otsuka M, Ijichi H, Ikenoue T, Tateishi K, Akanuma M, et al: Apoptosis signal-regulating kinase 1 regulates colitis and colitis-associated tumorigenesis by the innate immune responses. Gastroenterology 2010; 138: 1055–1067.e1051–e1054.
42.
Furuhata M, Takada E, Noguchi T, Ichijo H, Mizuguchi J: Apoptosis signal-regulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin. Exp Cell Res 2009; 315: 3467–3476.
43.
Hayakawa T, Matsuzawa A, Noguchi T, Takeda K, Ichijo H: The ASK1-MAP kinase pathways in immune and stress responses. Microbes Infect 2006; 8: 1098–1107.
44.
Tamura S, Toriumi S, Saito J, Awano K, Kudo TA, Kobayashi T: PP2C family members play key roles in regulation of cell survival and apoptosis. Cancer Sci 2006; 97: 563–567.
45.
Hayakawa Y, Hirata Y, Sakitani K, Nakagawa H, Nakata W, Kinoshita H, Takahashi R, Takeda K, Ichijo H, Maeda S, et al: Apoptosis signal-regulating kinase-1 inhibitor as a potent therapeutic drug for the treatment of gastric cancer. Cancer Sci 2012; 103: 2181–2185.
46.
Kawarazaki Y, Ichijo H, Naguro I: Apoptosis signal-regulating kinase 1 as a therapeutic target. Expert Opin Ther Targets 2014; 18: 651–664.
47.
Fujisawa T, Ichijo H: [ASK1-MAP kinase signaling pathway as a therapeutic target for human diseases]. Nihon Rinsho 2014; 72: 957–965.
48.
Eliseev RA, Malecki: Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem 2009; 284: 9692–9699.
49.
Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ, Knoops B: Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys 2009; 491: 39–45.
50.
Travis SP, Stange EF, Lemann M, Oresland T, Chowers Y, Forbes A, D’Haens G, Kitis G, Cortot A, Prantera C, et al: European evidence based consensus on the diagnosis and management of Crohn’s disease: current management. Gut 2006; 55(suppl 1):i16–i35.
51.
Brede G, Solheim J, Stang E, Prydz H: Mutants of the protein serine kinase PSKH1 disassemble the Golgi apparatus. Exp Cell Res 2003; 291: 299–312.
52.
Krech T, Scheuerer E, Geffers R, Kreipe H, Lehmann U, Christgen M: ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells. Cancer Lett 2012; 315: 153–160.
53.
Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW: Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol 2012; 83: 279–285.
54.
Caronia D, Patino-Garcia A, Perez-Martinez A, Pita G, Moreno LT, Zalacain-Diez M, Molina B, Colmenero I, Sierrasesumaga L, Benitez J, et al: Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study. PLoS One 2011; 6:e26091.
55.
Andersen V, Svenningsen K, Knudsen LA, Hansen AK, Holmskov U, Stensballe A, Vogel U: Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015; 21: 11862–11876.
56.
Kaskas BA, Louis E, Hindorf U, Schaeffeler E, Deflandre J, Graepler F, Schmiegelow K, Gregor M, Zanger UM, Eichelbaum M, et al: Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut 2003; 52: 140–142.
57.
Brant SR, Panhuysen CI, Nicolae D, Reddy DM, Bonen DK, Karaliukas R, Zhang L, Swanson E, Datta LW, Moran T, et al: MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 2003; 73: 1282–1292.
58.
Langmann T, Moehle C, Mauerer R, Scharl M, Liebisch G, Zahn A, Stremmel W, Schmitz G: Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 2004; 127: 26–40.
59.
Ho GT, Soranzo N, Nimmo ER, Tenesa A, Goldstein DB, Satsangi J: ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: discrimination of critical variants using a gene-wide haplotype tagging approach. Hum Mol Genet 2006; 15: 797–805.
60.
Yamamoto-Furusho JK, Villeda-Ramirez MA, Fonseca-Camarillo G, Sanchez-Munoz F, Dominguez-Lopez A, Barreto-Zuniga R, Uribe M: High gene expression of MDR1 (ABCB1) is associated with medical treatment response and long-term remission in patients with ulcerative colitis. Inflamm Bowel Dis 2010; 16: 541–542.
You do not currently have access to this content.