Introduction: The Toolkit to Examine Lifelike Language (TELL) is a web-based application providing speech biomarkers of neurodegeneration. After deployment of TELL v.1.0 in over 20 sites, we now introduce TELL v.2.0. Methods: First, we describe the app’s usability features, including functions for collecting and processing data onsite, offline, and via videoconference. Second, we summarize its clinical survey, tapping on relevant habits (e.g., smoking, sleep) alongside linguistic predictors of performance (language history, use, proficiency, and difficulties). Third, we detail TELL’s speech-based assessments, each combining strategic tasks and features capturing diagnostically relevant domains (motor function, semantic memory, episodic memory, and emotional processing). Fourth, we specify the app’s new data analysis, visualization, and download options. Finally, we list core challenges and opportunities for development. Results: Overall, TELL v.2.0 offers scalable, objective, and multidimensional insights for the field. Conclusion: Through its technical and scientific breakthroughs, this tool can enhance disease detection, phenotyping, and monitoring.

Neurodegenerative disorders (NDs), such as Alzheimer’s and Parkinson’s disease, are a leading cause of disability, caregiver stress, and financial strain worldwide. The number of cases, now estimated at 60 million, will triple by 2050. Early detection is crucial to improve treatments, management, and financial planning. Unfortunately, standard diagnostic methods are costly, stressful, and often hard to access due to scheduling delays and availability issues. A promising alternative consists in digital speech analysis. This affordable, noninvasive approach can identify NDs based on individuals’ voice recordings and their transcriptions. In 2023, we launched the Toolkit to Examine Lifelike Language (TELL), an online app providing robust speech biomarkers for clinical and research purposes. This paper introduces TELL v.2.0, a novel version with improved data collection, encryption, processing, storing, download, and visualization features. First, we explain the app’s basic operations and its possibilities for online and offline data collection. Second, we describe its language survey, which covers questions about demographics as well as language history, usage, competence, and difficulties. Third, we describe TELL’s speech tests, which assess key clinical features. Fourth, we outline the app’s functions for analyzing, visualizing, and downloading data. We finish by discussing the main challenges and future opportunities for TELL and the speech biomarker field. With this effort, we hope to boost the use of digital speech markers in medical and research fields.

1.
Parra
MA
,
Baez
S
,
Allegri
R
,
Nitrini
R
,
Lopera
F
,
Slachevsky
A
, et al
.
Dementia in Latin America: assessing the present and envisioning the future
.
Neurology
.
2018
;
90
(
5
):
222
31
.
2.
2021 Alzheimer’s disease facts and figures
.
Alzheimer’s Dement
.
2021
;
17
(
3
):
327
406
.
3.
GBD 2017 US Neurological Disorders Collaborators
;
Feigin
VL
,
Vos
T
,
Alahdab
F
,
Amit
AML
,
Bärnighausen
TW
, et al
.
Burden of neurological disorders across the us from 1990-2017: a global burden of disease study
.
JAMA Neurol
.
2021
;
78
(
2
):
165
76
.
4.
Cheng
ST
.
Dementia caregiver burden: a research update and critical analysis
.
Curr Psychiatry Rep
.
2017
;
19
(
9
):
64
.
5.
Nandi
A
,
Counts
N
,
Chen
S
,
Seligman
B
,
Tortorice
D
,
Vigo
D
, et al
.
Global and regional projections of the economic burden of Alzheimer's disease and related dementias from 2019 to 2050: a value of statistical life approach
.
eClinicalMedicine
.
2022
;
51
:
101580
.
6.
GBD 2021 Nervous System Disorders Collaborators
;
Seeher
KM
,
Schiess
N
,
Nichols
E
,
Cao
B
,
Servili
C
.
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
.
Lancet Neurol
.
2024
;
23
(
4
):
344
81
.
7.
GBD 2016 Parkinson’s Disease Collaborators
;
Elbaz
A
,
Nichols
E
,
Abd-Allah
F
,
Abdelalim
A
,
Adsuar
JC
.
Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
.
Lancet Neurol
.
2018
;
17
(
11
):
939
53
.
8.
GBD 2019 Dementia Forecasting Collaborators
,
Steinmetz
JD
,
Vollset
SE
,
Fukutaki
K
,
Chalek
J
,
Abd-Allah
F
, et al
.
Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019
.
Lancet Public Health
.
2022
;
7
(
2
):
e105
25
.
9.
Dubois
B
,
Padovani
A
,
Scheltens
P
,
Rossi
A
,
Dell’Agnello
G
.
Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges
.
J Alzheimers Dis
.
2016
;
49
(
3
):
617
31
.
10.
Isaacson
RS
,
Ganzer
CA
,
Hristov
H
,
Hackett
K
,
Caesar
E
,
Cohen
R
, et al
.
The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach
.
Alzheimers Dement
.
2018
;
14
(
12
):
1663
73
.
11.
Isaacson
RS
,
Hristov
H
,
Saif
N
,
Hackett
K
,
Hendrix
S
,
Melendez
J
, et al
.
Individualized clinical management of patients at risk for Alzheimer's dementia
.
Alzheimers Dement
.
2019
;
15
(
12
):
1588
602
.
12.
Cummings
J
,
Lee
G
,
Ritter
A
,
Sabbagh
M
,
Zhong
K
.
Alzheimer’s disease drug development pipeline: 2020
.
Alzheimers Dement
.
2020
;
6
(
1
):
e12050
.
13.
2020 Alzheimer’s disease facts and figures
.
Alzheimer’s Dement
.
2020
;
16
(
3
):
391
460
.
14.
Krupp
LB
,
Elkins
LE
.
Fatigue and declines in cognitive functioning in multiple sclerosis
.
Neurology
.
2000
;
55
(
7
):
934
9
.
15.
Hojman
DA
,
Duarte
F
,
Ruiz-Tagle
J
,
Budnich
M
,
Delgado
C
,
Slachevsky
A
.
The cost of dementia in an unequal country: the case of Chile
.
PLoS One
.
2017
;
12
(
3
):
e0172204
.
16.
García
AM
,
Bocanegra
Y
,
Herrera
E
,
Moreno
L
,
Carmona
J
,
Baena
A
, et al
.
Parkinson’s disease compromises the appraisal of action meanings evoked by naturalistic texts
.
Cortex
.
2018
;
100
:
111
26
.
17.
de la Fuente Garcia
S
,
Ritchie
CW
,
Luz
S
.
Artificial intelligence, speech, and language processing approaches to monitoring Alzheimer’s disease: a systematic review
.
J Alzheimers Dis
.
2020
;
78
(
4
):
1547
74
.
18.
García
AM
,
de Leon
J
,
Tee
BL
,
Blasi
DE
,
Gorno-Tempini
ML
.
Speech and language markers of neurodegeneration: a call for global equity
.
Brain
.
2023
;
146
(
12
):
4870
9
.
19.
Palmirotta
C
,
Aresta
S
,
Battista
P
,
Tagliente
S
,
Lagravinese
G
,
Mongelli
D
, et al
.
Unveiling the diagnostic potential of linguistic markers in identifying individuals with Parkinson’s disease through artificial intelligence: a systematic review
.
Brain Sci
.
2024
;
14
(
2
):
137
.
20.
Laske
C
,
Sohrabi
HR
,
Frost
SM
,
López-de-Ipiña
K
,
Garrard
P
,
Buscema
M
, et al
.
Innovative diagnostic tools for early detection of Alzheimer’s disease
.
Alzheimers Dement
.
2015
;
11
(
5
):
561
78
.
21.
García
AM
,
Johann
F
,
Echegoyen
R
,
Calcaterra
C
,
Riera
P
,
Belloli
L
, et al
.
Toolkit to Examine Lifelike Language (TELL): an app to capture speech and language markers of neurodegeneration
.
Behav Res Methods
.
2024
;
56
(
4
):
2886
900
.
22.
García
AM
,
Carrillo
F
,
Orozco-Arroyave
JR
,
Trujillo
N
,
Vargas Bonilla
JF
,
Fittipaldi
S
, et al
.
How language flows when movements don’t: an automated analysis of spontaneous discourse in Parkinson’s disease
.
Brain Lang
.
2016
;
162
:
19
28
.
23.
Eyigoz
E
,
Courson
M
,
Sedeño
L
,
Rogg
K
,
Orozco-Arroyave
JR
,
Nöth
E
, et al
.
From discourse to pathology: automatic identification of Parkinson’s disease patients via morphological measures across three languages
.
Cortex
.
2020
;
132
:
191
205
.
24.
García
AM
,
Arias-Vergara
T
,
C Vasquez-Correa
J
,
Nöth
E
,
Schuster
M
,
Welch
AE
, et al
.
Cognitive determinants of dysarthria in Parkinson’s disease: an automated machine learning approach
.
Mov Disord
.
2021
;
36
(
12
):
2862
73
.
25.
García
AM
,
Orozco-Arroyave
JR
.
Reply to: “does cognitive impairment influence motor speech performance in de novo Parkinson’s disease”
.
Mov Disord
.
2021
;
36
(
12
):
2982
3
.
26.
García
AM
,
Escobar-Grisales
D
,
Vásquez Correa
JC
,
Bocanegra
Y
,
Moreno
L
,
Carmona
J
, et al
.
Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories
.
NPJ Parkinsons Dis
.
2022
;
8
(
1
):
163
.
27.
García
AM
,
Welch
AE
,
Mandelli
ML
,
Henry
ML
,
Lukic
S
,
Torres Prioris
MJ
, et al
.
Automated detection of speech timing alterations in autopsy-confirmed nonfluent/agrammatic variant primary progressive aphasia
.
Neurology
.
2022
;
99
(
5
):
e500
11
.
28.
Pérez-Toro
PA
,
Klumpp
P
,
Hernández
A
,
Arias-Vergara
T
,
Lillo
P
,
Slachevsky
A
, et al
.
Alzheimer’s detection from English to Spanish using acoustic and linguistic embeddings
. In:
23rd interspeech conference. Incheon
.
Korea
:
Interspeech
;
2022
.
29.
Sanz
C
,
Carrillo
F
,
Slachevsky
A
,
Forno
G
,
Gorno Tempini
ML
,
Villagra
R
, et al
.
Automated text-level semantic markers of Alzheimer’s disease
.
Alzheimers Dement
.
2022
;
14
(
1
):
e12276
.
30.
Sanz
C
,
Cavanna
F
,
Muller
S
,
de la Fuente
L
,
Zamberlan
F
,
Palmucci
M
, et al
.
Natural language signatures of psilocybin microdosing
.
Psychopharmacology
.
2022
;
239
(
9
):
2841
52
.
31.
Escobar-Grisales
D
,
Ríos-Urrego
CD
,
Nöth
E
,
García
AM
,
Orozco-Arroyave
JR
.
An automatic multimodal approach to analyze linguistic and acoustic cues in Parkinson’s disease patients
.
Dublin, Ireland
:
Interspeech
;
2023
.
32.
Ferrante
FJ
,
Migeot
J
,
Birba
A
,
Amoruso
L
,
Pérez
G
,
Hesse
E
, et al
.
Multivariate word properties in fluency tasks reveal markers of Alzheimer’s dementia
.
Alzheimers Dement
.
2024
;
20
(
2
):
925
40
.
33.
Toro-Hernández
FD
,
Migeot
J
,
Marchant
N
,
Olivares
D
,
Ferrante
F
,
González-Gómez
R
, et al
.
Neurocognitive correlates of semantic memory navigation in Parkinson’s disease
.
NPJ Parkinsons Dis
.
2024
;
10
(
1
):
15
.
34.
Busquet
F
,
Efthymiou
F
,
Hildebrand
C
.
Voice analytics in the wild: validity and predictive accuracy of common audio-recording devices
.
Behav Res Methods
.
2024
;
56
(
3
):
2114
34
.
35.
Gertken
LM
,
Amengual
M
,
Birdong
D
.
Assessing language dominance with the bilingual Language Profile
. In:
Leclercq
P
,
Edmonds
A
,
Hilton
H
, editors.
Measuring L2 proficiency: perspectives from SLA
.
Bristol
:
Multilingual Matters
;
2014
.
36.
Faroqi-Shah
Y
,
Sampson
M
,
Pranger
M
,
Baughman
S
.
Cognitive control, word retrieval and bilingual aphasia: is there a relationship
.
J Neurolinguistics
.
2018
;
45
:
95
109
.
37.
Fraser
KC
,
Lundholm Fors
K
,
Eckerström
M
,
Öhman
F
,
KDJF
,
Kokkinakis
D
.
Predicting MCI status from multimodal language data using cascaded classifiers
.
Front Aging Neurosci
.
2019
;
11
:
205
.
38.
Gosztolya
G
,
Vincze
V
,
Tóth
L
,
Pákáski
M
,
Kálmán
J
,
Hoffmann
IJCS
.
Identifying mild cognitive impairment and mild Alzheimer’s disease based on spontaneous speech using ASR and linguistic features
.
Computer Speech Language
.
2019
;
53
:
181
97
.
39.
Perez
M
,
Jin
W
,
Le
D
,
Carlozzi
N
,
Dayalu
P
,
Roberts
A
, et al
.
Classification of Huntington disease using acoustic and lexical features
.
Interspeech
.
2018
;
2018
:
1898
902
.
40.
Bedi
G
,
Carrillo
F
,
Cecchi
GA
,
Slezak
DF
,
Sigman
M
,
Mota
NB
, et al
.
Automated analysis of free speech predicts psychosis onset in high-risk youths
.
NPJ Schizophr
.
2015
;
1
(
1
):
15030
.
41.
Lopes da Cunha
P
,
Ruiz
F
,
Ferrante
F
,
Sterpin
L
,
Ibáñez
A
,
Slachevsky
A
, et al
.
Automated free speech analysis reveals distinct markers of Alzheimer’s and frontotemporal dementia
.
PLoS One
.
2024
;
19
(
6
):
e0304272
.
42.
Rusz
J
,
Tykalova
T
,
Ramig
LO
,
Tripoliti
E
.
Guidelines for speech recording and acoustic analyses in dysarthrias of movement disorders
.
Mov Disord
.
2021
;
36
(
4
):
803
14
.
43.
Švec
JG
,
Granqvist
S
.
Tutorial and guidelines on measurement of sound pressure level in voice and speech
.
J Speech Lang Hear Res
.
2018
;
61
(
3
):
441
61
.
44.
Duffy
JR
.
Motor speech disorders: substrates, differential diagnosis, and management [Internet]
.
St. Louis, Mo
:
Elsevier Mosby Available from
;
2013
. http://site.ebrary.com/id/10733833
45.
Kearney
E
,
Guenther
FH
.
Articulating: the neural mechanisms of speech production
.
Lang Cogn Neurosci
.
2019
;
34
(
9
):
1214
29
.
46.
de Jong
NH
,
Wempe
T
.
Praat script to detect syllable nuclei and measure speech rate automatically
.
Behav Res Methods
.
2009
;
41
(
2
):
385
90
.
47.
Orozco-Arroyave
JR
,
Vásquez-Correa
JC
,
Vargas-Bonilla
JF
,
Arora
R
,
Dehak
N
,
Nidadavolu
PS
, et al
.
NeuroSpeech: an open-source software for Parkinson’s speech analysis
.
Digital Signal Process
.
2018
;
77
:
207
21
.
48.
Teixeira
JP
,
Oliveira
C
,
Lopes
C
.
Vocal acoustic analysis: jitter, shimmer and HNR parameters
.
Proced Technol
.
2013
;
9
:
1112
22
.
49.
Meilán
JJ
,
Martínez-Sánchez
F
,
Carro
J
,
López
DE
,
Millian-Morell
L
,
Arana
JM
.
Speech in Alzheimer’s disease: can temporal and acoustic parameters discriminate dementia
.
Dement Geriatr Cogn Disord
.
2014
;
37
(
5–6
):
327
34
.
50.
Chen
L
,
Lambon Ralph
MA
,
Rogers
TT
.
A unified model of human semantic knowledge and its disorders
.
Nat Hum Behav
.
2017
;
1
(
3
):
0039
.
51.
Ursino
M
,
Pirazzini
G
.
Construction of a hierarchical organization in semantic memory: a model based on neural masses and gamma-band synchronization
.
Cognit Comput
.
2024
;
16
(
1
):
326
47
.
52.
Binder
JR
,
Desai
RH
,
Graves
WW
,
Conant
LL
.
Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies
.
Cereb Cortex
.
2009
;
19
(
12
):
2767
96
.
53.
Ralph
MAL
,
Jefferies
E
,
Patterson
K
,
Rogers
TT
.
The neural and computational bases of semantic cognition
.
Nat Rev Neurosci
.
2017
;
18
(
1
):
42
55
.
54.
Balogh
R
,
Imre
N
,
Gosztolya
G
,
Hoffmann
L
,
Pákáski
M
,
Kálmán
J
.
The role of silence in verbal fluency tasks: a new approach for the detection of mild cognitive impairment
.
J Int Neuropsychol Soc
.
2023
;
29
(
1
):
46
58
.
55.
Dickerson
BC
,
Eichenbaum
H
.
The episodic memory system: neurocircuitry and disorders
.
Neuropsychopharmacology
.
2010
;
35
(
1
):
86
104
.
56.
Carreras
X
,
Chao
I
,
Padró
L
,
Padró
M
.
FreeLing: an open-source suite of language analyzers
. LREC: Citeseer.
2004
:
239
42
.
57.
Ruby
P
,
Schmidt
C
,
Hogge
M
,
D’Argembeau
A
,
Collette
F
,
Salmon
E
.
Social mind representation: where does it fail in frontotemporal dementia
.
J Cogn Neurosci
.
2007
;
19
(
4
):
671
83
.
58.
Mograbi
DC
,
Huntley
J
,
Critchley
H
.
Self-awareness in dementia: a taxonomy of processes, overview of findings, and integrative framework
.
Curr Neurol Neurosci Rep
.
2021
;
21
(
12
):
69
.
59.
Piolino
P
,
Chételat
G
,
Matuszewski
V
,
Landeau
B
,
Mézenge
F
,
Viader
F
, et al
.
In search of autobiographical memories: a PET study in the frontal variant of frontotemporal dementia
.
Neuropsychologia
.
2007
;
45
(
12
):
2730
43
.
60.
Vigliocco
G
,
Vinson
DP
,
Druks
J
,
Barber
H
,
Cappa
SF
.
Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies
.
Neurosci Biobehav Rev
.
2011
;
35
(
3
):
407
26
.
61.
Bucks
RS
,
Singh
S
,
Cuerden
JM
,
Wilcock
GK
.
Analysis of spontaneous, conversational speech in dementia of Alzheimer type: evaluation of an objective technique for analysing lexical performance
.
Aphasiology
.
2000
;
14
(
1
):
71
91
.
62.
Jarrold
W
,
Peintner
B
,
Wilkins
D
,
Vergryi
D
,
Richey
C
,
Gorno-Tempini
ML
, et al
.
Aided diagnosis of dementia type through computer-based analysis of spontaneous speech
. In:
Proceedings of the workshop on computational linguistics and clinical psychology: from linguistic signal to clinical Reality2014
; p.
27
37
.
63.
Williams
E
,
Theys
C
,
McAuliffe
M
.
Lexical-semantic properties of verbs and nouns used in conversation by people with Alzheimer's disease
.
PLoS One
.
2023
;
18
(
8
):
e0288556
.
64.
Bird
H
,
Lambon Ralph
MA
,
Patterson
K
,
Hodges
JR
.
The rise and fall of frequency and imageability: noun and verb production in semantic dementia
.
Brain Lang
.
2000
;
73
(
1
):
17
49
.
65.
Birba
A
,
García-Cordero
I
,
Kozono
G
,
Legaz
A
,
Ibáñez
A
,
Sedeño
L
, et al
.
Losing ground: frontostriatal atrophy disrupts language embodiment in Parkinson’s and Huntington’s disease
.
Neurosci Biobehav Rev
.
2017
;
80
:
673
87
.
66.
Green
MF
,
Hellemann
G
,
Horan
WP
,
Lee
J
,
Wynn
JK
.
From perception to functional outcome in schizophrenia: modeling the role of ability and motivation
.
Arch Gen Psychiatry
.
2012
;
69
(
12
):
1216
24
.
67.
Kipps
CM
,
Nestor
PJ
,
Acosta-Cabronero
J
,
Arnold
R
,
Hodges
JR
.
Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing
.
Brain
.
2009
;
132
(
Pt 3
):
592
603
.
68.
Piguet
O
,
Hornberger
M
,
Mioshi
E
,
Hodges
JR
.
Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management
.
Lancet Neurol
.
2011
;
10
(
2
):
162
72
.
69.
Kumfor
F
,
Piguet
O
.
Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings
.
Neuropsychol Rev
.
2012
;
22
(
3
):
280
97
.
70.
Bucks
RS
,
Radford
SA
.
Emotion processing in Alzheimer's disease
.
Aging Ment Health
.
2004
;
8
(
3
):
222
32
.
71.
Kumfor
F
,
Piguet
O
.
Emotion recognition in the dementias: brain correlates and patient implications
.
Neurodegener Dis Manag
.
2013
;
3
(
3
):
277
88
.
72.
Lee
CM
,
Narayanan
SS
.
Toward detecting emotions in spoken dialogs
.
IEEE Trans Speech Audio Process
.
2005
;
13
(
2
):
293
303
.
73.
Koolagudi
SG
,
Rao
KS
.
Emotion recognition from speech: a review
.
Int J Speech Technol
.
2012
;
15
(
2
):
99
117
.
74.
Cao
H
,
Beňuš
Š
,
Gur
RC
,
Verma
R
,
Nenkova
A
.
Prosodic cues for emotion: analysis with discrete characterization of intonation
.
Speech Prosody
.
2014
;
2014
:
130
4
.
75.
Pérez
JM
,
Giudici
JC
,
Luque
F
. pysentimiento: a python toolkit for sentiment analysis and socialnlp tasks. arXiv e-prints; 2021. arXiv: 2106.09462.
76.
Liu
Y
,
Ott
M
,
Goyal
N
,
Du
J
,
Joshi
M
,
Chen
D
, et al
.
Roberta: a robustly optimized bert pretraining approach
. arXiv preprint arXiv:190711692.
2019
.
77.
Ekman
P
. Basic emotions. Handbook of cognition and emotion.
1999
;
98
(
45–60
):
16
.
78.
Baez
S
,
Herrera
E
,
Gershanik
O
,
Garcia
AM
,
Bocanegra
Y
,
Kargieman
L
, et al
.
Impairments in negative emotion recognition and empathy for pain in Huntington’s disease families
.
Neuropsychologia
.
2015
;
68
:
158
67
.
79.
Fittipaldi
S
,
Ibanez
A
,
Baez
S
,
Manes
F
,
Sedeno
L
,
Garcia
AM
.
More than words: social cognition across variants of primary progressive aphasia
.
Neurosci Biobehav Rev
.
2019
;
100
:
263
84
.
80.
Baez
S
,
Herrera
E
,
Trujillo
C
,
Cardona
JF
,
Diazgranados
JA
,
Pino
M
, et al
.
Classifying Parkinson's disease patients with syntactic and socio-emotional verbal measures
.
Front Aging Neurosci
.
2020
;
12
:
586233
.
81.
Ibañez
A
,
Fittipaldi
S
,
Trujillo
C
,
Jaramillo
T
,
Torres
A
,
Cardona
JF
, et al
.
Predicting and characterizing neurodegenerative subtypes with multimodal neurocognitive signatures of social and cognitive processes
.
J Alzheimers Dis
.
2021
;
83
(
1
):
227
48
.
82.
Moguilner
S
,
Birba
A
,
Fittipaldi
S
,
Gonzalez-Campo
C
,
Tagliazucchi
E
,
Reyes
P
, et al
.
Multi-feature computational framework for combined signatures of dementia in underrepresented settings
.
J Neural Eng
.
2022
;
19
(
4
):
046048
.
83.
Rogers
HP
,
Hseu
A
,
Kim
J
,
Silberholz
E
,
Jo
S
,
Dorste
A
, et al
.
Voice as a biomarker of pediatric health: a scoping review
.
Children
.
2024
;
11
(
6
):
684
.
You do not currently have access to this content.