Changes of vascular endothelial growth factor (VEGF) secretion have recently been demonstrated in patients with Alzheimer’s disease (AD). Since VEGF has been involved in brain angiogenesis, neuroprotection and cerebromicrovascular exchange of substrates and nutrients, the study of VEGF could have important relapses into the pathogenesis and treatment of AD. Within this context, 35 healthy subjects (16 of young and 19 of old age), 18 patients with dementia of the vascular type (VAD) and 22 with dementia of the Alzheimer’s type (AD) were included in the study. VEGF levels were determined in the supernates of circulating natural killer (NK) immune cells isolated by immunomagnetic separation (pure CD16 + CD56 + NK cells at a final density of 7.75 × 106 cells/ml). VEGF was measured in spontaneous conditions (without modulation) and after exposure of NK cells with IL-2, lipopolysaccharide (LPS), dehydroepiandrosterone sulfate (DHEAS), LPS + insulin, amyloid-β (Aβ) fragment 1–42, the inactive sequence Aβ40–1 and Aβ1–42 + insulin. A significant decrease in VEGF released by NK cells was demonstrated in AD subjects compared to the other groups. No differences of VEGF levels were found between healthy subjects of old age and the VAD group. The incubation with LPS and DHEAS significantly increased, in a dose-dependent manner, VEGF levels in AD as well as in healthy subjects of young and old age and in VAD patients. The incubation of NK cells with Aβ1–42 completely suppressed VEGF generation in AD subjects, also reducing VEGF release in the other groups. The co-incubation of NK with LPS + insulin, at different molar concentrations, significantly restored (4- and 6-fold increase from LPS alone) VEGF in AD, also enhancing VEGF secretion in healthy subjects and the VAD group, while the co-incubation of NK with Aβ1–42 + insulin promptly abolished the negative effects of Aβ1–42 on VEGF release. These data might suggest that the decreased VEGF secretion by peripheral immune cells of AD subjects could have a negative role for brain angiogenesis, neuroprotection and for brain microvascular permeability to nutrients, increasing brain frailty towards hypoxic injuries. On the contrary, insulin and DHEAS could have beneficial effects in AD, as well as in VAD and in physiological aging, by increasing, in a dose-dependent fashion, VEGF availability by peripheral and resident immune and endothelial cells, so contributing to increase its circulating pool.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.