Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors globally. Macrophages, as essential components of the immune system, play crucial roles in immune regulation, inflammation modulation, and antitumor activity. However, it remains unclear whether tumor-associated macrophages can serve as prognostic markers for HCC. Methods: First, we identified tumor-associated macrophages based on single-cell data from GSE140228. Then, using a machine learning approach with a combination of 101 module genes, we constructed an optimal prognostic model. Subsequently, we compared our constructed model with other published prognostic models for HCC. Finally, we utilized the generated model score to predict the response to chemotherapy and immune therapy. Results: First, we identified clusters of tumor-associated macrophages using single-cell data. Subsequently, we calculated the tumor-associated macrophage score based on module genes from the previous step. Compared to traditional clinical indicators, tumor-associated macrophage signature (TAMS) exhibits significant advantages. The TAMS C-index not only predicts overall survival, but also recurrence-free survival in HCC patients. Additionally, there was a higher prevalence of TP53 mutations in HCC patients with high TAMS. Furthermore, patients with low TAMS showed greater sensitivity to immunotherapy compared to those with high TAMS. Notably, the number and intensity of interactions between TAM and other T lymphocytes were significantly higher than those involving other cell populations. Interestingly, the high TAMS group exhibited significantly elevated levels of immune checkpoint markers and M2 macrophage markers. Conclusion: TAMS can serve as a novel and potent tool, offering improved treatment options and prognostic assessment for patients with HCC.

1.
Sung
H
,
Ferlay
J
,
Siegel
RL
,
Laversanne
M
,
Soerjomataram
I
,
Jemal
A
, et al
.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2021
;
71
(
3
):
209
49
.
2.
Romagnoli
R
,
Mazzaferro
V
,
Bruix
J
.
Surgical resection for hepatocellular carcinoma: moving from what can be done to what is worth doing
.
Hepatology
.
2015
;
62
(
2
):
340
2
.
3.
Esnaola
NF
,
Lauwers
GY
,
Mirza
NQ
,
Nagorney
DM
,
Doherty
D
,
Ikai
I
, et al
.
Predictors of microvascular invasion in patients with hepatocellular carcinoma who are candidates for orthotopic liver transplantation
.
J Gastrointest Surg
.
2002
;
6
(
2
):
224
32
.
4.
Wang
W
,
Wei
C
.
Advances in the early diagnosis of hepatocellular carcinoma
.
Genes Dis
.
2020
;
7
(
3
):
308
19
.
5.
Best
J
,
Bechmann
LP
,
Sowa
JP
,
Sydor
S
,
Dechêne
A
,
Pflanz
K
, et al
.
GALAD score detects early hepatocellular carcinoma in an international cohort of patients with nonalcoholic steatohepatitis
.
Clin Gastroenterol Hepatol
.
2020
;
18
(
3
):
728
35.e4
.
6.
Bayard
Q
,
Meunier
L
,
Peneau
C
,
Renault
V
,
Shinde
J
,
Nault
JC
, et al
.
Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress
.
Nat Commun
.
2018
;
9
(
1
):
5235
.
7.
Gordan
JD
,
Kennedy
EB
,
Abou-Alfa
GK
,
Beal
E
,
Finn
RS
,
Gade
TP
, et al
.
Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline update
.
J Clin Oncol
.
2024
;
42
(
15
):
1830
50
.
8.
Abou-Alfa
GK
,
Lau
G
,
Kudo
M
,
Chan
SL
,
Kelley
RK
,
Furuse
J
, et al
.
Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma
.
NEJM Evid
.
2022
;
1
(
8
):
EVIDoa2100070
.
9.
Cheng
AL
,
Qin
S
,
Ikeda
M
,
Galle
PR
,
Ducreux
M
,
Kim
TY
, et al
.
Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma
.
J Hepatol
.
2022
;
76
(
4
):
862
73
.
10.
Donne
R
,
Lujambio
A
.
The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma
.
Hepatology
.
2023
;
77
(
5
):
1773
96
.
11.
Maude
SL
,
Frey
N
,
Shaw
PA
,
Aplenc
R
,
Barrett
DM
,
Bunin
NJ
, et al
.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
17
.
12.
Park
JH
,
Rivière
I
,
Gonen
M
,
Wang
X
,
Sénéchal
B
,
Curran
KJ
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
59
.
13.
Kochenderfer
JN
,
Somerville
R
,
Lu
T
,
Yang
JC
,
Sherry
RM
,
Feldman
SA
, et al
.
Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy
.
Mol Ther
.
2017
;
25
(
10
):
2245
53
.
14.
Comoli
P
,
Chabannon
C
,
Koehl
U
,
Lanza
F
,
Urbano-Ispizua
A
,
Hudecek
M
, et al
.
Development of adaptive immune effector therapies in solid tumors
.
Ann Oncol
.
2019
;
30
(
11
):
1740
50
.
15.
Chen
Y
,
Yu
Z
,
Tan
X
,
Jiang
H
,
Xu
Z
,
Fang
Y
, et al
.
CAR-macrophage: a new immunotherapy candidate against solid tumors
.
Biomed Pharmacother
.
2021
;
139
:
111605
.
16.
Lin
Y
,
Xu
J
,
Lan
H
.
Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications
.
J Hematol Oncol
.
2019
;
12
(
1
):
76
.
17.
Shapouri-Moghaddam
A
,
Mohammadian
S
,
Vazini
H
,
Taghadosi
M
,
Esmaeili
SA
,
Mardani
F
, et al
.
Macrophage plasticity, polarization, and function in health and disease
.
J Cell Physiol
.
2018
;
233
(
9
):
6425
40
.
18.
Pan
Y
,
Yu
Y
,
Wang
X
,
Zhang
T
.
Tumor-associated macrophages in tumor immunity
.
Front Immunol
.
2020
;
11
:
583084
.
19.
Komohara
Y
,
Jinushi
M
,
Takeya
M
.
Clinical significance of macrophage heterogeneity in human malignant tumors
.
Cancer Sci
.
2014
;
105
(
1
):
1
8
.
20.
Heusinkveld
M
,
van der Burg
SH
.
Identification and manipulation of tumor associated macrophages in human cancers
.
J Transl Med
.
2011
;
9
:
216
.
21.
Ulloa-Montoya
F
,
Louahed
J
,
Dizier
B
,
Gruselle
O
,
Spiessens
B
,
Lehmann
FF
, et al
.
Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy
.
J Clin Oncol
.
2013
;
31
(
19
):
2388
95
.
22.
Lauss
M
,
Donia
M
,
Harbst
K
,
Andersen
R
,
Mitra
S
,
Rosengren
F
, et al
.
Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma
.
Nat Commun
.
2017
;
8
(
1
):
1738
.
23.
Tian
L
,
Long
F
,
Hao
Y
,
Li
B
,
Li
Y
,
Tang
Y
, et al
.
A cancer associated fibroblasts-related six-gene panel for anti-PD-1 therapy in melanoma driven by weighted correlation network analysis and supervised machine learning
.
Front Med
.
2022
;
9
:
880326
.
24.
Li
S
,
Zhu
J
,
Zhu
T
,
Xu
Y
,
Chen
W
,
Zhou
Q
, et al
.
Development and validation of an inflammatory response-related gene and clinical factor-based signature for predicting prognosis in gastric cancer
.
J Gastrointest Oncol
.
2023
;
14
(
2
):
599
616
.
25.
Cong
T
,
Yang
C
,
Cao
Q
,
Ren
J
,
Luo
Y
,
Yuan
P
, et al
.
The role of GNMT and MMP12 expression in determining TACE efficacy: validation at transcription and protein levels
.
J Hepatocell Carcinoma
.
2024
;
11
:
95
111
.
26.
Banchereau
R
,
Leng
N
,
Zill
O
,
Sokol
E
,
Liu
G
,
Pavlick
D
, et al
.
Molecular determinants of response to PD-L1 blockade across tumor types
.
Nat Commun
.
2021
;
12
(
1
):
3969
.
27.
Jin
S
,
Guerrero-Juarez
CF
,
Zhang
L
,
Chang
I
,
Ramos
R
,
Kuan
CH
, et al
.
Inference and analysis of cell-cell communication using CellChat
.
Nat Commun
.
2021
;
12
(
1
):
1088
.
28.
Aibar
S
,
González-Blas
CB
,
Moerman
T
,
Huynh-Thu
VA
,
Imrichova
H
,
Hulselmans
G
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods
.
2017
;
14
(
11
):
1083
6
.
29.
Liu
Z
,
Liu
L
,
Weng
S
,
Guo
C
,
Dang
Q
,
Xu
H
, et al
.
Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer
.
Nat Commun
.
2022
;
13
(
1
):
816
.
30.
Lu
X
,
Meng
J
,
Zhou
Y
,
Jiang
L
,
Yan
F
.
MOVICS: an R package for multi-omics integration and visualization in cancer subtyping
.
Bioinformatics
.
2021
;
36
(
22–23
):
5539
41
.
31.
Barros
MH
,
Hauck
F
,
Dreyer
JH
,
Kempkes
B
,
Niedobitek
G
.
Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages
.
PLoS One
.
2013
;
8
(
11
):
e80908
.
32.
Mantovani
A
,
Allavena
P
,
Marchesi
F
,
Garlanda
C
.
Macrophages as tools and targets in cancer therapy
.
Nat Rev Drug Discov
.
2022
;
21
(
11
):
799
820
.
33.
Salazar
R
,
Tabernero
J
.
New approaches but the same flaws in the search for prognostic signatures
.
Clin Cancer Res
.
2014
;
20
(
8
):
2019
22
.
34.
Brown
ZJ
,
Tsilimigras
DI
,
Ruff
SM
,
Mohseni
A
,
Kamel
IR
,
Cloyd
JM
, et al
.
Management of hepatocellular carcinoma: a review
.
JAMA Surg
.
2023
;
158
(
4
):
410
20
.
35.
Koncina
E
,
Haan
S
,
Rauh
S
,
Letellier
E
.
Prognostic and predictive molecular biomarkers for colorectal cancer: updates and challenges
.
Cancers
.
2020
;
12
(
2
):
319
.
36.
Anders
CB
,
Lawton
T
,
Smith
HL
,
Garret
J
,
Doucette
MM
,
Ammons
M
.
Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes
.
J Leukoc Biol
.
2022
;
111
(
3
):
667
93
.
37.
Staller
E
,
Sheppard
CM
,
Baillon
L
,
Frise
R
,
Peacock
TP
,
Sancho-Shimizu
V
, et al
.
A natural variant in ANP32B impairs influenza virus replication in human cells
.
J Gen Virol
.
2021
;
102
(
9
):
001664
.
38.
Yang
S
,
Zhu
XN
,
Zhang
HL
,
Yang
Q
,
Wei
YS
,
Zhu
D
, et al
.
ANP32B-mediated repression of p53 contributes to maintenance of normal and CML stem cells
.
Blood
.
2021
;
138
(
24
):
2485
98
.
39.
Cooks
T
,
Pateras
IS
,
Jenkins
LM
,
Patel
KM
,
Robles
AI
,
Morris
J
, et al
.
Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
.
Nat Commun
.
2018
;
9
(
1
):
771
.
40.
Budzinska
MA
,
Tu
T
,
d’Avigdor
WM
,
McCaughan
GW
,
Luciani
F
,
Shackel
NA
.
Accumulation of deleterious passenger mutations is associated with the progression of hepatocellular carcinoma
.
PLoS One
.
2016
;
11
(
9
):
e0162586
.
41.
Malfitano
AM
,
Pisanti
S
,
Napolitano
F
,
Di Somma
S
,
Martinelli
R
,
Portella
G
.
Tumor-associated macrophage status in cancer treatment
.
Cancers
.
2020
;
12
(
7
):
1987
.
You do not currently have access to this content.