Introduction: Esophagogastroduodenoscopy is the most important tool to detect gastric cancer (GC). In this study, we developed a computer-aided detection (CADe) system to detect GC with white light imaging (WLI) and linked color imaging (LCI) modes and aimed to compare the performance of CADe with that of endoscopists. Methods: The system was developed based on the deep learning framework from 9,021 images in 385 patients between 2017 and 2020. A total of 116 LCI and WLI videos from 110 patients between 2017 and 2023 were used to evaluate per-case sensitivity and per-frame specificity. Results: The per-case sensitivity and per-frame specificity of CADe with a confidence level of 0.5 in detecting GC were 78.6% and 93.4% for WLI and 94.0% and 93.3% for LCI, respectively (p < 0.001). The per-case sensitivities of nonexpert endoscopists for WLI and LCI were 45.8% and 80.4%, whereas those of expert endoscopists were 66.7% and 90.6%, respectively. Regarding detectability between CADe and endoscopists, the per-case sensitivities for WLI and LCI were 78.6% and 94.0% in CADe, respectively, which were significantly higher than those for LCI in experts (90.6%, p = 0.004) and those for WLI and LCI in nonexperts (45.8% and 80.4%, respectively, p < 0.001); however, no significant difference for WLI was observed between CADe and experts (p = 0.134). Conclusions: Our CADe system showed significantly better sensitivity in detecting GC when used in LCI compared with WLI mode. Moreover, the sensitivity of CADe using LCI is significantly higher than those of expert endoscopists using LCI to detect GC.

1.
Bray
F
,
Ferlay
J
,
Soerjomataram
I
,
Siegel
RL
,
Torre
LA
,
Jemal
A
.
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2018
;
68
(
6
):
394
424
.
2.
Katai
H
,
Ishikawa
T
,
Akazawa
K
,
Isobe
Y
,
Miyashiro
I
,
Oda
I
, et al
.
Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007)
.
Gastric Cancer
.
2018
;
21
(
1
):
144
54
.
3.
Kanzaki
H
,
Takenaka
R
,
Kawahara
Y
,
Kawai
D
,
Obayashi
Y
,
Baba
Y
, et al
.
Linked color imaging (LCI), a novel image-enhanced endoscopy technology, emphasizes the color of early gastric cancer
.
Endosc Int Open
.
2017
;
5
(
10
):
E1005
13
.
4.
Hirasawa
T
,
Ikenoyama
Y
,
Ishioka
M
,
Namikawa
K
,
Horiuchi
Y
,
Nakashima
H
, et al
.
Current status and future perspective of artificial intelligence applications in endoscopic diagnosis and management of gastric cancer
.
Dig Endos
.
2021
;
33
(
2
):
263
72
.
5.
Fukuda
H
,
Miura
Y
,
Hayashi
Y
,
Takezawa
T
,
Ino
Y
,
Okada
M
, et al
.
Linked color imaging technology facilitates early detection of flat gastric cancers
.
Clin J Gastroenterol
.
2015
;
8
(
6
):
385
9
.
6.
Fukuda
H
,
Miura
Y
,
Osawa
H
,
Takezawa
T
,
Ino
Y
,
Okada
M
, et al
.
Linked color imaging can enhance recognition of early gastric cancer by high color contrast to surrounding gastric intestinal metaplasia
.
J Gastroenterol
.
2019
;
54
(
5
):
396
406
.
7.
Ono
S
,
Kawada
K
,
Dohi
O
,
Kitamura
S
,
Koike
T
,
Hori
S
, et al
.
Linked color imaging focused on neoplasm detection in the upper gastrointestinal tract: a randomized trial
.
Ann Intern Med
.
2021
;
174
(
1
):
18
24
.
8.
Suzuki
K
.
Overview of deep learning in medical imaging
.
Radiol Phys Technol
.
2017
;
10
(
3
):
257
73
.
9.
Hosny
A
,
Parmar
C
,
Quackenbush
J
,
Schwartz
LH
,
Aerts
HJ
.
Artificial intelligence in radiology
.
Nat Rev Cancer
.
2018
;
18
(
8
):
500
10
.
10.
Hashimoto
DA
,
Rosman
G
,
Rus
D
,
Meireles
OR
.
Artificial intelligence in surgery: promises and perils
.
Ann Surg
.
2018
;
268
(
1
):
70
6
.
11.
Roth
HR
,
Lu
L
,
Liu
J
,
Yao
J
,
Seff
A
,
Cherry
K
, et al
.
Improving computer-aided detection using convolutional neural networks and random view aggregation
.
IEEE Trans Med Imaging
.
2016
;
35
(
5
):
1170
81
.
12.
Hirasawa
T
,
Aoyama
K
,
Tanimoto
T
,
Ishihara
S
,
Shichijo
S
,
Ozawa
T
, et al
.
Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
.
Gastric Cancer
.
2018
;
21
(
4
):
653
60
.
13.
Sakai
Y
,
Takemoto
S
,
Hori
K
,
Nishimura
M
,
Ikematsu
H
,
Yano
T
, et al
.
Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network
.
Annu Int Conf IEEE Eng Med Biol Soc
.
2018
;
2018
:
4138
41
.
14.
Ishioka
M
,
Hirasawa
T
,
Tada
T
.
Detecting gastric cancer from video images using convolutional neural networks
.
Dig Endos
.
2019
;
31
(
2
):
E34
5
.
15.
Ikenoyama
Y
,
Hirasawa
T
,
Ishioka
M
,
Namikawa
K
,
Yoshimizu
S
,
Horiuchi
Y
, et al
.
Detecting early gastric cancer: comparison between the diagnostic ability of convolutional neural networks and endoscopists
.
Dig Endosc
.
2021
;
33
(
1
):
141
50
.
16.
Jocher
G
,
Stoken
A
,
Borovec
J
,
Changyu
L
,
Hogan
A
,
Diaconu
L
, et al
.
ultralytics/yolov5: v3. 0
.
Zenodo
;
2020
.
17.
Guo
Z
,
Nemoto
D
,
Zhu
X
,
Li
Q
,
Aizawa
M
,
Utano
K
, et al
.
Polyp detection algorithm can detect small polyps: ex vivo reading test compared with endoscopists
.
Dig Endosc
.
2021
;
33
(
1
):
162
9
.
18.
Ontor
MZ
,
Ali
MM
,
Ahmed
K
,
Bui
FM
,
Al-Zahrani
FA
,
Mahmud
SH
, et al
.
Early-stage cervical cancerous cell detection from cervix images using yolov5
.
Comput Mater Contin
.
2023
;
74
:
3727
41
.
19.
Ren
P
,
Xiao
Y
,
Chang
X
,
Huang
PY
,
Li
Z
,
Gupta
BB
, et al
.
A survey of deep active learning
.
ACM Comput Surv
.
2021
;
54
(
9
):
1
40
.
20.
Yang
Y
,
Loog
M
.
To actively initialize active learning
.
Pattern Recognit
.
2022
;
131
:
108836
.
21.
Guo
L
,
Xiao
X
,
Wu
C
,
Zeng
X
,
Zhang
Y
,
Du
J
, et al
.
Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
.
Gastrointest Endosc
.
2020
;
91
(
1
):
41
51
.
22.
Hussein
M
,
Lines
D
,
González-Bueno Puyal
J
,
Kader
R
,
Bowman
N
,
Sehgal
V
, et al
.
Computer-aided characterization of early cancer in Barrett’s esophagus on i-scan magnification imaging: a multicenter international study
.
Gastrointest Endosc
.
2023
;
97
(
4
):
646
54
.
23.
Suzuki
T
,
Hara
T
,
Kitagawa
Y
,
Takashiro
H
,
Nankinzan
R
,
Sugita
O
, et al
.
Linked-color imaging improves endoscopic visibility of colorectal nongranular flat lesions
.
Gastrointest Endosc
.
2017
;
86
(
4
):
692
7
.
24.
Menon
S
,
Trudgill
N
.
How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis
.
Endosc Int Open
.
2014
;
2
(
2
):
E46
50
.
You do not currently have access to this content.