Over the last 25 years, our understanding of the driving forces for hepatobiliary elimination and knowledge of the molecular basis of uptake and efflux transport in hepatocytes have undergone fundamental changes. This refers to bile acids and many other endogenous substances as well as to drugs that are eliminated on the hepatobiliary route. In this development, not only molecular cloning, functional characterization, and localization of transporters were decisive, but also the discovery of hereditary mutations in genes encoding sinusoidal uptake transporters and canalicular export pumps in humans and rodents. Uptake by passive diffusion and elimination into bile driven by the electrochemical gradient are no longer considered relevant for hepatobiliary elimination in the intact organism. Furthermore, insights into the relative roles of uptake transporters and unidirectional ATP-driven efflux pumps were obtained when we established double-transfected polarized cell lines stably expressing, as an example, the hepatocellular uptake transporter OATP1B3 and the apical (canalicular) efflux pump multidrug resistance protein 2 (MRP2; ABCC2). ATP-dependent efflux transporters localized to the basolateral (sinusoidal) hepatocyte membrane, particularly MRP3 (ABCC3) and MRP4 (ABCC4), pump substances from hepatocytes into sinusoidal blood. Bile acids are substrates for human MRP4 in the presence of physiological concentrations of reduced glutathione, which undergoes co-transport. These efflux pumps have been recognized in recent years to play an important compensatory role in cholestasis and to contribute to the balance between uptake and efflux of bile acids and other organic anions during the vectorial transport from blood into bile. This sinusoidal efflux not only enables subsequent renal elimination but also facilitates the re-uptake of substances into neighboring hepatocytes located more centrally and downstream in the sinusoid.

1.
Kartenbeck J, Leuschner U, Mayer R, Keppler D: Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology 1996;23:1061-1066.
2.
Keppler D, Kartenbeck J: The canalicular conjugate export pump encoded by the cMRP/cMOAT gene; in Boyer JL, Ockner RK (eds): Progress in Liver Diseases. Philadelphia, Saunders, 1996, pp 55-67.
3.
Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP: A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 1997;25:1539-1542.
4.
Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Németh A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ: A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998;20:233-238.
5.
Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van Goor H, Thompson RJ, Müller M: Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 1999;117:1370-1379.
6.
van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, van Esch A, de Waart DR, Oude Elferink RP, Kenworthy KE, Sticová E, al-Edreesi M, Knisely AS, Kmoch S, Jirsa M, Schinkel AH: Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 2012;122:519-528.
7.
Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, Ho-Mok K, Bootsma AH, Groen AK, Schaap FG, Oude Elferink RP, Waterham HR, Wanders RJ: Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015;61:260-267.
8.
Cui Y, König J, Keppler D: Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 2001;60:934-943.
9.
Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y: Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep. Am J Physiol Gastrointest Liver Physiol 2006;290:G550-G556.
10.
Bartholomé K, Rius M, Letschert K, Keller D, Timmer J, Keppler D: Data-based mathematical modeling of vectorial transport across double-transfected polarized cells. Drug Metab Dispos 2007;35:1476-1481.
11.
König J, Rost D, Cui Y, Keppler D: Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 1999;29:1156-1163.
12.
Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D: Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 2003;38:374-384.
13.
Keppler D: Cholestasis and the role of basolateral efflux pumps. Z Gastroenterol 2011;49:1553-1557.
14.
Guhlmann A, Krauss K, Oberdorfer F, Siegel T, Scheuber PH, Müller J, Csuk-Glänzer B, Ziegler S, Ostertag H, Keppler D: Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology 1995;21:1568-1575.
15.
Proost JH, Nijssen HM, Strating CB, Meijer DK, Groothuis GM: Pharmacokinetic modeling of the sinusoidal efflux of anionic ligands from the isolated perfused rat liver: the influence of albumin. J Pharmacokinet Biopharm 1993;21:375-394.
16.
Sørensen M, Munk OL, Ørntoft NW, Frisch K, Andersen KJ, Mortensen FV, Alstrup AK, Ott P, Hofmann AF, Keiding S: Hepatobiliary secretion kinetics of conjugated bile acids measured in pigs by 11C-Cholylsarcosine PET. J Nucl Med 2016;57:961-966.
17.
Orntoft NW, Frisch K, Ott P, Keiding S, Sorensen M: Hepatic transport of conjugated bile acids in humans quantitated by 11C-cholylsarcosine PET/CT. Hepatology 2014;60:204.
18.
Hagenbuch B, Stieger B, Foguet M, Lübbert H, Meier PJ: Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 1991;88:10629-10633.
19.
Hagenbuch B, Meier PJ: Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 1994;93:1326-1331.
20.
Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, Nomura H, Unno M, Suzuki M, Naitoh T, Matsuno S, Yawo H: Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem 1999;274:17159-17163.
21.
Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 1999;274:37161-37168.
22.
König J, Cui Y, Nies AT, Keppler D: A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 2000;278:G156-G164.
23.
König J, Cui Y, Nies AT, Keppler D: Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem 2000;275:23161-23168.
24.
Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 2001;120:525-533.
25.
Hagenbuch B, Meier PJ: Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004;447:653-665.
26.
König J: Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011;201:1-28.
27.
Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ, Stieger B: Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 2009;296:C570-C582.
28.
Kopplow K, Letschert K, König J, Walter B, Keppler D: Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 2005;68:1031-1038.
29.
Bronger H, König J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, Keppler D, Nies AT: ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res 2005;65:11419-11428.
30.
van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH: Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res 2013;19:821-832.
31.
Kitamura T, Jansen P, Hardenbrook C, Kamimoto Y, Gatmaitan Z, Arias IM: Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci U S A 1990;87:3557-3561.
32.
Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D: ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem 1990;265:19279-19286.
33.
Nies AT, Keppler D: The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2007;453:643-659.
34.
Adachi Y, Kobayashi H, Kurumi Y, Shouji M, Kitano M, Yamamoto T: ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology 1991;14(4 pt 1):655-659.
35.
Müller M, Ishikawa T, Berger U, Klünemann C, Lucka L, Schreyer A, Kannicht C, Reutter W, Kurz G, Keppler D: ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J Biol Chem 1991;266:18920-18926.
36.
Nishida T, Gatmaitan Z, Che M, Arias IM: Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A 1991;88:6590-6594.
37.
Noé J, Stieger B, Meier PJ: Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 2002;123:1659-1666.
38.
Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y: ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003;278:22644-22649.
39.
Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH: Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001;61:3458-3464.
40.
Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD: A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 1998;95:15665-15670.
41.
Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC: Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987;84:7735-7738.
42.
Gottesman MM, Pastan I: Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427.
43.
Nies AT, Herrmann E, Brom M, Keppler D: Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmiedebergs Arch Pharmacol 2008;376:449-461.
44.
Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y: A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 2005;102:17923-17928.
45.
Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, Zhang L: Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther 2013;94:52-63.
46.
Keppler D, König J, Nies AT: Conjugate export pumps of the multidrug resistance protein (MRP) family in liver; in Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA (eds): The Liver: Biology and Pathobiology. New York, Lippincott Williams & Wilkins, 2001, pp 373-382.
47.
Akita H, Suzuki H, Hirohashi T, Takikawa H, Sugiyama Y: Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm Res 2002;19:34-41.
48.
Lee YM, Cui Y, König J, Risch A, Jäger B, Drings P, Bartsch H, Keppler D, Nies AT: Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics 2004;14:213-223.
49.
Russel FG, Koenderink JB, Masereeuw R: Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 2008;29:200-207.
50.
Rius M, Hummel-Eisenbeiss J, Hofmann AF, Keppler D: Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 2006;290:G640-G649.
51.
Rius M, Hummel-Eisenbeiss J, Keppler D: ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J Pharmacol Exp Ther 2008;324:86-94.
52.
Jansen RS, Küçükosmanoglu A, de Haas M, Sapthu S, Otero JA, Hegman IE, Bergen AA, Gorgels TG, Borst P, van de Wetering K: ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci U S A 2013;110:20206-20211.
53.
Donner MG, Keppler D: Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 2001;34:351-359.
54.
Soroka CJ, Lee JM, Azzaroli F, Boyer JL: Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 2001;33:783-791.
55.
Jemnitz K, Veres Z, Vereczkey L: Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human. Toxicol Sci 2010;115:80-88.
56.
Keitel V, Burdelski M, Warskulat U, Kühlkamp T, Keppler D, Häussinger D, Kubitz R: Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 2005;41:1160-1172.
57.
Fröhling W, Stiehl A: Bile salt glucuronides: identification and quantitative analysis in the urine of patients with cholestasis. Eur J Clin Invest 1976;6:67-74.
58.
Stiehl A, Raedsch R, Rudolph G, Gundert-Remy U, Senn M: Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acids in cirrhotic patients. Hepatology 1985;5:492-495.
59.
Back P: Bile acid glucuronides, II[1]. Isolation and identification of a chenodeoxycholic acid glucuronide from human plasma in intrahepatic cholestasis. Hoppe Seylers Z Physiol Chem 1976;357:213-217.
60.
Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y: Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem 2002;277:6497-6503.
61.
Grube M, Reuther S, Meyer Zu Schwabedissen H, Köck K, Draber K, Ritter CA, Fusch C, Jedlitschky G, Kroemer HK: Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab Dispos 2007;35:30-35.
62.
Fahrmayr C, König J, Auge D, Mieth M, Fromm MF: Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells. Br J Pharmacol 2012;165:1836-1847.
63.
Mahdi ZM, Synal-Hermanns U, Yoker A, Locher KP, Stieger B: Role of multidrug resistance protein 3 in antifungal-Induced cholestasis. Mol Pharmacol 2016;90:23-34.
64.
Fehrenbach T, Cui Y, Faulstich H, Keppler D: Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins. Naunyn Schmiedebergs Arch Pharmacol 2003;368:415-420.
65.
Letschert K, Komatsu M, Hummel-Eisenbeiss J, Keppler D: Vectorial transport of the peptide CCK-8 by double-transfected MDCKII cells stably expressing the organic anion transporter OATP1B3 (OATP8) and the export pump ABCC2. J Pharmacol Exp Ther 2005;313:549-556.
66.
Rius M, Keller D, Brom M, Hummel-Eisenbeiss J, Lyko F, Keppler D: Vectorial transport of nucleoside analogs from the apical to the basolateral membrane in double-transfected cells expressing the human concentrative nucleoside transporter hCNT3 and the export pump ABCC4. Drug Metab Dispos 2010;38:1054-1063.
67.
Ballatori N, Christian WV, Wheeler SG, Hammond CL: The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol Aspects Med 2013;34:683-692.
68.
Keppler D: Uptake and efflux transporters for conjugates in human hepatocytes. Methods Enzymol 2005;400:531-542.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.