The gut microbiota influences essential human functions including digestion, energy metabolism, and inflammation by modulating multiple endocrine, neural, and immune pathways of the host. Its composition and complexity varies markedly across individuals and across different sites of the gut, but provides a certain level of resilience against external perturbation. Short-term antibiotic treatment is able to shift the gut microbiota to long-term alternative dysbiotic states, which may promote the development and aggravation of disease. Common features of post-antibiotic dysbiosis include a loss of taxonomic and functional diversity combined with reduced colonization resistance against invading pathogens, which harbors the danger of antimicrobial resistance. This review summarizes the antibiotic-related changes of the gut microbiota and potential consequences in health and disease.

1.
Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-214.
2.
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al: Diversity of the human intestinal microbial flora. Science 2005;308:1635-1638.
3.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
4.
Human Microbiome Project Consortium: A framework for human microbiome research. Nature 2012;486:215-221.
5.
Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al: Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690-703.
6.
Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 2012;6:1415-1426.
7.
Sonnenburg JL, Angenent LT, Gordon JI: Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 2004;5:569-573.
8.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al: Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-563.
9.
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al: Human gut microbiome viewed across age and geography. Nature 2012;486:222-227.
10.
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al: Enterotypes of the human gut microbiome. Nature 2011;473:174-180.
11.
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R: Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220-230.
12.
Dethlefsen L, Huse S, Sogin ML, Relman DA: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008;6:e280.
13.
Jernberg C, Löfmark S, Edlund C, Jansson JK: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007;1:56-66.
14.
Vangay P, Ward T, Gerber JS, Knights D: Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 2015;17:553-564.
15.
Stecher B, Maier L, Hardt WD: ‘Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 2013;11:277-284.
16.
Kern W, Zeidan R, Telschow C, Schröder H: GERMAP 2012 - Antibiotika-Resistenz und -Verbrauch, 2014.
17.
Heinsen FA, Knecht H, Neulinger SC, Schmitz RA, Knecht C, Kühbacher T, et al: Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes 2015;6:243-254.
18.
Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, et al: In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 2012;109:1691-1696.
19.
Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, et al: Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J 2014;8:1566-1576.
20.
Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L: Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010;5:e9836.
21.
Dethlefsen L, Relman DA: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108(suppl 1):4554-4561.
22.
Sullivan A, Barkholt L, Nord CE: Lactobacillus acidophilus, Bifidobacterium lactis and Lactobacillus F19 prevent antibiotic-associated ecological disturbances of Bacteroides fragilis in the intestine. J Antimicrob Chemother 2003;52:308-311.
23.
Yin J, M P, Wang S, Liao SX, Peng X, He Y, et al: Different dynamic patterns of β-lactams, quinolones, glycopeptides and macrolides on mouse gut microbial diversity. PLoS One 2015;10:e0126712.
24.
Pallav K, Dowd SE, Villafuerte J, Yang X, Kabbani T, Hansen J, et al: Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial. Gut Microbes 2014;5:458-467.
25.
Stewardson AJ, Gaïa N, François P, Malhotra-Kumar S, Delémont C, Martinez de Tejada B, et al: Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin Microbiol Infect 2015;21:344.e1-344.e11.
26.
van der Waaij D, Berghuis-de Vries JM, Lekkerkerk Lekkerkerk-v: Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 1971;69:405-411.
27.
Schubert AM, Sinani H, Schloss PD: Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. MBio 2015;6:e00974.
28.
Buffie CG, Pamer EG: Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013;13:790-801.
29.
Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA: The application of ecological theory toward an understanding of the human microbiome. Science 2012;336:1255-1262.
30.
Owens RC Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA: Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 2008;46(suppl 1):S19-S31.
31.
Bohnhoff M, Miller CP: Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J Infect Dis 1962;111:117-127.
32.
Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al: The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015;16:164-177.
33.
Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al: Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 2008;298:463-472.
34.
Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al: Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469:543-547.
35.
Mangin I, Lévêque C, Magne F, Suau A, Pochart P: Long-term changes in human colonic Bifidobacterium populations induced by a 5-day oral amoxicillin-clavulanic acid treatment. PLoS One 2012;7:e50257.
36.
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al: Host-gut microbiota metabolic interactions. Science 2012;336:1262-1267.
37.
Ubeda C, Pamer EG: Antibiotics, microbiota, and immune defense. Trends Immunol 2012;33:459-466.
38.
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al: Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-1481.
39.
Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, et al: Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 2008;22:2416-2426.
40.
Gómez-Hurtado I, Moratalla A, Moya-Pérez Á, Peiró G, Zapater P, González-Navajas JM, et al: Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis. J Hepatol 2014;61:799-808.
41.
Löfmark S, Jernberg C, Jansson JK, Edlund C: Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 2006;58:1160-1167.
42.
Nyberg SD, Osterblad M, Hakanen AJ, Löfmark S, Edlund C, Huovinen P, et al: Long-term antimicrobial resistance in Escherichia coli from human intestinal microbiota after administration of clindamycin. Scand J Infect Dis 2007;39:514-520.
43.
Engelbrektson AL, Korzenik JR, Sanders ME, Clement BG, Leyer G, Klaenhammer TR, et al: Analysis of treatment effects on the microbial ecology of the human intestine. FEMS Microbiol Ecol 2006;57:239-250.
44.
van de Leur JJ, Vollaard EJ, Janssen AJ, Dofferhoff AS: Influence of low dose ciprofloxacin on microbial colonization of the digestive tract in healthy volunteers during normal and during impaired colonization resistance. Scand J Infect Dis 1997;29:297-300.
45.
Borzio M, Salerno F, Piantoni L, Cazzaniga M, Angeli P, Bissoli F, et al: Bacterial infection in patients with advanced cirrhosis: a multicentre prospective study. Dig Liver Dis 2001;33:41-48.
46.
Edlund C, Barkholt L, Olsson-Liljequist B, Nord CE: Effect of vancomycin on intestinal flora of patients who previously received antimicrobial therapy. Clin Infect Dis 1997;25:729-732.
47.
Almeida R, Gerbaba T, Petrof EO: Recurrent Clostridium difficile infection and the microbiome. J Gastroenterol 2015;51:1-10.
48.
Sullivan A, Edlund C, Nord CE: Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 2001;1:101-114.
49.
Adamsson I, Nord CE, Lundquist P, Sjöstedt S, Edlund C: Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J Antimicrob Chemother 1999;44:629-640.
50.
De La Cochetière MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Doré J: Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 2005;43:5588-5592.
51.
Harper PH, Truelove SC, Lee EC, Kettlewell MG, Jewell DP: Split ileostomy and ileocolostomy for Crohn's disease of the colon and ulcerative colitis: a 20 year survey. Gut 1983;24:106-113.
52.
Stallmach A, Carstens O: Role of infections in the manifestation or reactivation of inflammatory bowel diseases. Inflamm Bowel Dis 2002;8:213-218.
53.
Levine A, Turner D: Combined azithromycin and metronidazole therapy is effective in inducing remission in pediatric Crohn's disease. J Crohns Colitis 2011;5:222-226.
54.
Rutgeerts P, Hiele M, Geboes K, Peeters M, Penninckx F, Aerts R, et al: Controlled trial of metronidazole treatment for prevention of Crohn's recurrence after ileal resection. Gastroenterology 1995;108:1617-1621.
55.
Reshef L, Kovacs A, Ofer A, Yahav L, Maharshak N, Keren N, et al: Pouch inflammation is associated with a decrease in specific bacterial taxa. Gastroenterology 2015;149:718-727.
56.
Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al: Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS One 2012;7:e49138.
57.
Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, et al: High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 2004;127:412-421.
58.
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, et al: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;105:16731-16736.
59.
Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, et al: Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 2015;pii:gutjnl-2014-307649.
60.
Ungaro R, Bernstein CN, Gearry R, Hviid A, Kolho KL, Kronman MP, et al: Antibiotics associated with increased risk of new-onset Crohn's disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol 2014;109:1728-1738.
61.
Hashash JG, Chintamaneni P, Ramos Rivers CM, Koutroubakis IE, Regueiro MD, Baidoo L, et al: Patterns of antibiotic exposure and clinical disease activity in inflammatory bowel disease: a 4-year prospective study. Inflamm Bowel Dis 2015;21:2576-2582.
62.
Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O, Aguilera M, et al: Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm Bowel Dis 2014;20:861-871.
63.
Rossen NG, Fuentes S, Boonstra K, D'Haens GR, Heilig HG, Zoetendal EG, et al: The mucosa-associated microbiota of PSC patients is characterized by low diversity and low abundance of uncultured Clostridiales II. J Crohns Colitis 2015;9:342-348.
64.
Björnsson E, Cederborg A, Akvist A, Simren M, Stotzer PO, Bjarnason I: Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis. Scand J Gastroenterol 2005;40:1090-1094.
65.
Silveira MG, Torok NJ, Gossard AA, Keach JC, Jorgensen RA, Petz JL, et al: Minocycline in the treatment of patients with primary sclerosing cholangitis: results of a pilot study. Am J Gastroenterol 2009;104:83-88.
66.
Färkkilä M, Karvonen AL, Nurmi H, Nuutinen H, Taavitsainen M, Pikkarainen P, et al: Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology 2004;40:1379-1386.
67.
Tabibian JH, Weeding E, Jorgensen RA, Petz JL, Keach JC, Talwalkar JA, et al: Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis - a pilot study. Aliment Pharmacol Ther 2013;37:604-612.
68.
Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, et al: Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012;336:1325-1329.
69.
Donia MS, Fischbach MA: HUMAN MICROBIOTA. Small molecules from the human microbiota. Science 2015;349:1254766.
70.
Hentges DJ: Inhibition of Shigella flexneri by the normal intestinal flora. I. Mechanisms of inhibition by Klebsiella. J Bacteriol 1967;93:1369-1373.
71.
Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, et al: Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008;455:804-807.
72.
Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr, et al: Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014;515:423-426.
73.
Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31:677-689.
74.
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009;15:1016-1022.
75.
Ou J, DeLany JP, Zhang M, Sharma S, O'Keefe SJ: Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr Cancer 2012;64:34-40.
76.
Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et al: Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013;98:111-120.
77.
Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al: Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013;105:1907-1911.
78.
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.
79.
Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al: Towards the human colorectal cancer microbiome. PLoS One 2011;6:e20447.
80.
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012;22:292-298.
81.
Dik VK, van Oijen MG, Smeets HM, Siersema PD: Frequent use of antibiotics is associated with colorectal cancer risk: results of a nested case-control study. Dig Dis Sci 2016;61:255-264.
82.
Kilkkinen A, Rissanen H, Klaukka T, Pukkala E, Heliövaara M, Huovinen P, et al: Antibiotic use predicts an increased risk of cancer. Int J Cancer 2008;123:2152-2155.
83.
Boursi B, Haynes K, Mamtani R, Yang YX: Impact of antibiotic exposure on the risk of colorectal cancer. Pharmacoepidemiol Drug Saf 2015;24:534-542.
84.
Kato I, Koenig KL, Baptiste MS, Lillquist PP, Frizzera G, Burke JS, et al: History of antibiotic use and risk of non-Hodgkin's lymphoma (NHL). Int J Cancer 2003;107:99-105.
85.
Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH: Antibiotic use in relation to the risk of breast cancer. JAMA 2004;291:827-835.
86.
Butaye P, Devriese LA, Haesebrouck F: Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 2003;16:175-188.
87.
Angelakis E, Merhej V, Raoult D: Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infect Dis 2013;13:889-899.
88.
Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ, Maleta KM, et al: Antibiotics as part of the management of severe acute malnutrition. N Engl J Med 2013;368:425-435.
89.
Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, Mwarumba S, et al: Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 2005;352:39-47.
90.
Southern KW, Barker PM, Solis-Moya A, Patel L: Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 2012;12:CD002203.
91.
Lane JA, Murray LJ, Harvey IM, Donovan JL, Nair P, Harvey RF: Randomised clinical trial: Helicobacter pylori eradication is associated with a significantly increased body mass index in a placebo-controlled study. Aliment Pharmacol Ther 2011;33:922-929.
92.
Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D: Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One 2010;5:e9074.
93.
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al: Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341:1241214.
94.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-1023.
95.
Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913-916.e7.
96.
Drenick EJ, Fisler J, Johnson D: Hepatic steatosis after intestinal bypass - prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology 1982;82:535-548.
97.
Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, et al: Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2013;11:868-875.e1-e3.
98.
Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al: Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013;57:601-609.
99.
Engstler AJ, Aumiller T, Degen C, Dürr M, Weiss E, Maier IB, et al: Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut 2015;pii:gutjnl-2014-308379.
100.
Wieland A, Frank DN, Harnke B, Bambha K: Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2015;42:1051-1063.
101.
Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012;482:179-185.
102.
Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al: The gut microbiota and host health: a new clinical frontier. Gut 2015;pii:gutjnl-2015-309990.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.