Abstract
While it is now accepted that the gut microbiota contribute to the genotype-environment-lifestyle interactions triggering inflammatory bowel disease (IBD) episodes, efforts to identify the pathogen(s) that cause these diseases have met with limited success. The advent of culture-independent techniques for characterizing the structure and/or function of microbial communities (hereafter referred to as metagenomics) has provided new insights into the events associated with the onset, remission and recurrence of IBD. A large number of observational and/or case-control studies of IBD patients have confirmed substantive changes in gut bacterial profiles (dysbiosis) associated with disease. These types of studies have been augmented by new profiling approaches that support the identification of more ‘colitogenic' bacteria from numerically predominant taxa. Evidence of alterations in lesser abundant taxa such as the methanogenic archaea, to favor types that are more immunogenic, has also been forthcoming. Several recent longitudinal studies of patients with Crohn's disease have produced additional insights, including evidence for the role of ‘anti-inflammatory' microbiota in providing a protective effect and/or promoting remission. In summation, the implications of dysbiosis and restoration of a ‘healthy microbiota' in IBD patients requires definition beyond a taxonomic assessment of the changes in the gut microbiota during disease course. The available evidence does suggest that specific members of the gut microbiota can contribute either pro- or anti-inflammatory effects, and their ecological fitness in the large bowel affects the onset and recurrence of IBD. While metagenomics and related approaches offer the potential to provide novel and important insights into these microbiota and thereby the pathophysiology of IBD, we also need to better understand factors affecting the ecological fitness of these microbes, if new treatment of IBD patients are to be delivered.