While the central role of an adaptive, T cell-mediated immune response to certain gluten peptides in celiac disease is well established, the innate immune response to wheat proteins remains less well defined. We identified wheat amylase trypsin inhibitors (ATIs), but not gluten, as major stimulators of innate immune cells (dendritic cells > macrophages > monocytes), while intestinal epithelial cells were nonresponsive. ATIs bind to and activate the CD14-MD2 toll-like receptor 4 (TLR4) complex. This activation occurs both in vitro and in vivo after oral ingestion of purified ATIs or gluten, which is usually enriched in ATIs. Wheat ATIs represent a family of up to 17 proteins with molecular weights of around 15 kDa and a variable primary but conserved secondary structure characterized by 5 intrachain disulfide bonds and alpha helices. They mostly form di- and tetramers that appear to equally activate TLR4. Relevant biological activity is confined to ATIs in gluten-containing cereals, while gluten-free cereals display no or minimal activities. ATIs represent up to 4% of total wheat protein and are highly resistant to intestinal proteases. In line with their dose-dependent function as co-stimulatory molecules in adaptive immunity of celiac disease, they appear to play a role in promoting other immune-mediated diseases within and outside the GI tract. Thus, ATIs may be prime candidates of severe forms of non-celiac gluten (wheat) sensitivity.

1.
Ellis A, Linaker BD: Non-coeliac gluten sensitivity? Lancet 1978;1:1358-1359.
2.
Ludvigsson JF, Leffler DA, Bai JC, et al: The Oslo definitions for coeliac disease and related terms. Gut 2013;62:43-52.
3.
Catassi C, Bai JC, Bonaz B, et al: Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrients 2013;5:3839-3853.
4.
Carroccio A, Mansueto P, Iacono G, Soresi M, D'Alcamo A, Cavataio F, Brusca I, Florena AM, Ambrosiano G, Seidita A, Pirrone G, Rini GB: Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. Am J Gastroenterol 2012;107:1898-1906.
5.
Volta U, Bardella MT, Calabrò A, Troncone R, Corazza GR; Study Group for Non-Celiac Gluten Sensitivity: An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med 2014;23:85.
6.
Schuppan D, Junker Y, Barisani D: Celiac disease: from pathogenesis to novel therapies. Gastroenterology 2009;137:1912-1933.
7.
Sollid LM, Jabri B: Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol 2013;13:294-302.
8.
Tatham AS, Shewry PR: Allergens to wheat and related cereals. Clin Exp Allergy 2008;38:1712-1726.
9.
Jelinkova L, Tuckova L, Cinova J, Flegelova Z, Tlaskalova-Hogenova H: Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Lett 2004;571:81-85.
10.
Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H: Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 2004;173:1925-1933.
11.
Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A: Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 2008;135:194-204.
12.
Thomas KE, Sapone A, Fasano A, Vogel SN: Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. J Immunol 2006;176:2512-2521.5.
13.
Sapone A, Lammers KM, Mazzarella G, Mikhailenko I, Cartenì M, Casolaro V, Fasano A: Differential mucosal IL-17 expression in two gliadin-induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease. Int Arch Allergy Immunol 2010;152:75-80.
14.
Fritscher-Ravens A, Schuppan D, Ellrichmann M, Schoch S, Röcken C, Brasch J, Bethge J, Böttner M, Klose J, Milla PJ: Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 2014;147:1012-1020.
15.
Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D: Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 2012;209:2395-2408.
16.
Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB: Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci 2011;9:10.
17.
Finnie C, Melchior S, Roepstorff P, Svensson B: Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 2002;129:1308-1319.
18.
Oda Y, Matsunaga T, Fukuyama K, Miyazaki T, Morimoto T: Tertiary and quaternary structures of 0.19 α-amylase inhibitor from wheat kernel determined by X-ray analysis at 2.06 Å resolution. Biochemistry 1997;36:13503-13511.
19.
Altenbach SB, Vensel WH, Dupont FM: The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res Notes 2011;4:242.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.