Abstract
Background: Celiac disease (CD) is a small-intestinal inflammatory disease that is triggered by the ingestion of the storage proteins (gluten) of wheat, barley and rye. Key Messages: Endocrine autoimmunity is prevalent in patients with CD and their relatives. The genes that predispose to endocrine autoimmune diseases, e.g. type 1 diabetes, autoimmune thyroid diseases, and Addison's disease, i.e. DR3-DQ2 and DR4-DQ8, are also the major genetic determinants of CD, which is the best understood HLA-linked disease. Thus, up to 30% of first-degree relatives both of patients with CD and/or endocrine autoimmunity are affected by the other disease. In CD, certain gluten proteins bind with high affinity to HLA-DQ2 or -DQ8 in the small-intestinal mucosa, to activate gluten-specific T cells which are instrumental in the destruction of the resorptive villi. Here, the autoantigen tissue transglutaminase increases the T cell response by generating deamidated gluten peptides that bind more strongly to DQ2 or DQ8. Classical symptoms such as diarrhea and consequences of malabsorption like anemia and osteoporosis are often absent in patients with (screening-detected) CD, but this absence does not significantly affect these patients' incidence of endocrine autoimmunity. Moreover, once autoimmunity is established, a gluten-free diet is not able to induce remission. However, ongoing studies attempt to address how far a gluten-free diet may prevent or retard the development of CD and endocrine autoimmunity in children at risk. Conclusions: The close relationship between CD and endocrine autoimmunity warrants a broader immune genetic and endocrine screening of CD patients and their relatives.