Background: The immune response causing celiac disease (CD) depends on the activation of intestinal CD4+ T cells by gluten-derived peptides presented by HLA-DQ2 or HLA-DQ8 molecules, the main genetic risk factor. However, additional factors are necessary to impair immune tolerance to dietary gluten, to stimulate intraepithelial lymphocytes (IEL) and to induce intestinal damage. Key Messages: Current data point to a central role of interleukin-15 (IL-15). In situ and ex vivo studies indicate that IL-15 stimulates the accumulation and cytotoxic activation of CD8+ T IEL in active CD, and that of the malignant innate-like IEL in type II refractory CD (RCDII). Other studies show that IL-15 impairs the immunoregulatory control of effector T cells, notably CD8+. Recently, animal models have been designed to investigate the respective role of CD4+ T cells and IL-15 in CD. We discuss more particularly our results in such a model, which shows that IL-15 produced in excess in the intestine can cooperate with CD4+ T cells specific for a dietary antigen to trigger a celiac-like enteropathy. In this mouse model, CD4+ T cells activated by dietary ovalbumin secreted IL-2 which, along with IL-15, stimulated the expansion of noncognate intestinal cytotoxic CD8+ T cells containing large amounts of granzyme B. In the presence of IL-15, the latter cells did not respond to regulatory T cells, and accumulated in the intestine close to epithelial damage. Conclusion: On the basis of these data, we propose that, in CD, gluten-specific CD4+ T cells synthesize cytokines that synergize with IL-15 to license the expansion and activation of cytotoxic IEL, which drive tissue damage. We suggest that IL-15 is a meaningful therapeutic target, notably in patients with RCDII in which malignant IEL can respond to IL-15 independently of signals provided by CD4+ T cells.

1.
Abadie V, Sollid LM, Barreiro LB, Jabri B: Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 2011;29:493-525.
2.
Meresse B, Malamut G, Cerf-Bensussan N: Celiac disease: an immunological jigsaw. Immunity 2012;36:907-919.
3.
Abadie V, Jabri B: IL-15: a central regulator of celiac disease immunopathology. Immunol Rev 2014;260:221-234.
4.
Di Niro R, Mesin L, Zheng NY, Stamnaes J, Morrissey M, Lee JH, Huang M, Iversen R, du Pre MF, Qiao SW, et al: High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 2012;18:441-445.
5.
Steinsbo O, Henry Dunand CJ, Huang M, Mesin L, Salgado-Ferrer M, Lundin KE, Jahnsen J, Wilson PC, Sollid LM: Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat Commun 2014;5:4041.
6.
Qiao SW, Iversen R, Raki M, Sollid LM: The adaptive immune response in celiac disease. Semin Immunopathol 2012;34:523-540.
7.
Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C, Ben-Khalifa K, Dugave C, Tamouza H, van Niel G, et al: Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008;205:143-154.
8.
Lebreton C, Menard S, Abed J, Moura IC, Coppo R, Dugave C, Monteiro RC, Fricot A, Traore MG, Griffin M, et al: Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 2012;143:698-707, e691-e694.
9.
Abed J, Lebreton C, Champier G, Cuvillier A, Cogne M, Meresse B, Dugave C, Garfa-Traore M, Corthesy B, Cerf-Bensussan N, et al: Abnormal apical-to-basal transport of dietary ovalbumin by secretory IgA stimulates a mucosal Th1 response. Mucosal Immunol 2014;7:315-324.
10.
Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, Spaenij L, Koning F: The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA 2003;100:12390-12395.
11.
Black KE, Murray JA, David CS: HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol 2002;169:5595-5600.
12.
de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, Jackson DC, Ladhams J, Allison J, McCluskey J: Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol 2009;182:7440-7450.
13.
Du Pre MF, Kozijn AE, van Berkel LA, ter Borg MN, Lindenbergh-Kortleve D, Jensen LT, Kooy-Winkelaar Y, Koning F, Boon L, Nieuwenhuis EE, et al: Tolerance to ingested deamidated gliadin in mice is maintained by splenic, type 1 regulatory T cells. Gastroenterology 2011;141:610-620, 620, e611-e612.
14.
Marietta E, Black K, Camilleri M, Krause P, Rogers RS 3rd, David C, Pittelkow MR, Murray JA: A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J Clin Invest 2004;114:1090-1097.
15.
Galipeau HJ, Rulli NE, Jury J, Huang X, Araya R, Murray JA, David CS, Chirdo FG, McCoy KD, Verdu EF: Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice. J Immunol 2011;187:4338-4346.
16.
Troncone R, Ferguson A: Gliadin presented via the gut induces oral tolerance in mice. Clin Exp Immunol 1988;72:284-287.
17.
Rochman Y, Spolski R, Leonard WJ: New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 2009;9:480-490.
18.
Fehniger TA, Caligiuri MA: Interleukin 15: biology and relevance to human disease. Blood 2001;97:14-32.
19.
Waldmann TA: The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006;6:595-601.
20.
Ring AM, Lin JX, Feng D, Mitra S, Rickert M, Bowman GR, Pande VS, Li P, Moraga I, Spolski R, et al: Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat Immunol 2012;13:1187-1195.
21.
Liao W, Lin JX, Leonard WJ: Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38:13-25.
22.
Josefowicz SZ, Lu LF, Rudensky AY: Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012;30:531-564.
23.
Korneychuk N, Ramiro-Puig E, Ettersperger J, Schulthess J, Montcuquet N, Kiyono H, Meresse B, Cerf-Bensussan N: Interleukin 15 and CD4(+) T cells cooperate to promote small intestinal enteropathy in response to dietary antigen. Gastroenterology 2014;146:1017-1027.
24.
Passerini L, Allan SE, Battaglia M, Di Nunzio S, Alstad AN, Levings MK, Roncarolo MG, Bacchetta R: STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol 2008;20:421-431.
25.
Sandau MM, Schluns KS, Lefrancois L, Jameson SC: Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol 2004;173:6537-6541.
26.
Schluns KS, Klonowski KD, Lefrancois L: Transregulation of memory CD8 T-cell proliferation by IL-15Ralpha+ bone marrow-derived cells. Blood 2004;103:988-994.
27.
Schluns KS, Nowak EC, Cabrera-Hernandez A, Puddington L, Lefrancois L, Aguila HL: Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor alpha expression. Proc Natl Acad Sci USA 2004;101:5616-5621.
28.
Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM, Freud AG, Robinson ML, Durbin J, Caligiuri MA: Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 2001;193:219-231.
29.
Ohta N, Hiroi T, Kweon MN, Kinoshita N, Jang MH, Mashimo T, Miyazaki J, Kiyono H: IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta+NK1.1+ T cells for the development of small intestinal inflammation. J Immunol 2002;169:460-468.
30.
Malamut G, Meresse B, Cellier C, Cerf-Bensussan N: Refractory celiac disease: from bench to bedside. Semin Immunopathol 2012;34:601-613.
31.
Schmitz F, Tjon JM, van Bergen J, Koning F: Dendritic cells promote expansion and survival of aberrant TCR-negative intraepithelial lymphocyte lines from refractory celiac disease type II patients. Mol Immunol 2014;58:10-16.
32.
Colpitts SL, Stoklasek TA, Plumlee CR, Obar JJ, Guo C, Lefrancois L: Cutting edge: the role of IFN-alpha receptor and MyD88 signaling in induction of IL-15 expression in vivo. J Immunol 2012;188:2483-2487.
33.
Colpitts SL, Stonier SW, Stoklasek TA, Root SH, Aguila HL, Schluns KS, Lefrancois L: Transcriptional regulation of IL-15 expression during hematopoiesis. J Immunol 2013;191:3017-3024.
34.
Tan X, Lefrancois L: Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium. Genes Immun 2006;7:407-416.
35.
Muller JR, Waldmann TA, Kruhlak MJ, Dubois S: Paracrine and transpresentation functions of IL-15 are mediated by diverse splice versions of IL-15Ralpha in human monocytes and dendritic cells. J Biol Chem 2012;287:40328-40338.
36.
Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, et al: Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 2003;125:730-745.
37.
Bernardo D, Garrote JA, Allegretti Y, Leon A, Gomez E, Bermejo-Martin JF, Calvo C, Riestra S, Fernandez-Salazar L, Blanco-Quiros A, et al: Higher constitutive IL15R alpha expression and lower IL-15 response threshold in coeliac disease patients. Clin Exp Immunol 2008;154:64-73.
38.
Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, Paulli M, Cifone MG, Corazza GR: Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006;55:469-477.
39.
Jabri B, de Serre NP, Cellier C, Evans K, Gache C, Carvalho C, Mougenot JF, Allez M, Jian R, Desreumaux P, et al: Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 2000;118:867-879.
40.
Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M: Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000;119:996-1006.
41.
Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, et al: A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004;21:367-377.
42.
Malamut G, El Machhour R, Montcuquet N, Martin-Lanneree S, Dusanter-Fourt I, Verkarre V, Mention JJ, Rahmi G, Kiyono H, Butz EA, et al: IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010;120:2131-2143.
43.
Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, et al: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004;21:357-366.
44.
Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M, Bhagat G, Lee L, Tretiakova M, Semrad C, Kistner E, et al: Reprogramming of CTLs into natural killer-like cells in celiac disease. J Exp Med 2006;203:1343-1355.
45.
Tjon JM, Kooy-Winkelaar YM, Tack GJ, Mommaas AM, Schreurs MW, Schilham MW, Mulder CJ, van Bergen J, Koning F: DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients. J Immunol 2011;186:6304-6312.
46.
Ye W, Young JD, Liu CC: Interleukin-15 induces the expression of mRNAs of cytolytic mediators and augments cytotoxic activities in primary murine lymphocytes. Cell Immunol 1996;174:54-62.
47.
Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B: NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 2001;167:5527-5530.
48.
Benahmed M, Meresse B, Arnulf B, Barbe U, Mention JJ, Verkarre V, Allez M, Cellier C, Hermine O, Cerf-Bensussan N: Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology 2007;132:994-1008.
49.
Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O: Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011;34:237-246.
50.
Torgerson TR, Linane A, Moes N, Anover S, Mateo V, Rieux-Laucat F, Hermine O, Vijay S, Gambineri E, Cerf-Bensussan N, et al: Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 2007;132:1705-1717.
51.
DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, Marietta EV, Kasarda DD, Waldmann TA, Murray JA, et al: Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011;471:220-224.
52.
Ben Ahmed M, Belhadj Hmida N, Moes N, Buyse S, Abdeladhim M, Louzir H, Cerf-Bensussan N: IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. J Immunol 2009;182:6763-6770.
53.
Hmida NB, Ben Ahmed M, Moussa A, Rejeb MB, Said Y, Kourda N, Meresse B, Abdeladhim M, Louzir H, Cerf-Bensussan N: Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am J Gastroenterol 2012;107:604-611.
54.
Zanzi D, Stefanile R, Santagata S, Iaffaldano L, Iaquinto G, Giardullo N, Lania G, Vigliano I, Vera AR, Ferrara K, et al: IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in celiac disease. Am J Gastroenterol 2011;106:1308-1317.
55.
van Leeuwen MA, du Pre MF, van Wanrooij RL, de Ruiter LF, Raatgeep HR, Lindenbergh-Kortleve DJ, Mulder CJ, de Ridder L, Escher JC, Samsom JN: Changes in natural Foxp3(+)Treg but not mucosally-imprinted CD62L(neg)CD38(+)Foxp3(+)Treg in the circulation of celiac disease patients. PLoS One 2013;8:e68432.
56.
Cosnes J, Cellier C, Viola S, Colombel JF, Michaud L, Sarles J, Hugot JP, Ginies JL, Dabadie A, Mouterde O, et al: Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin Gastroenterol Hepatol 2008;6:753-758.
57.
Barnden MJ, Allison J, Heath WR, Carbone FR: Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 1998;76:34-40.
58.
Han A, Newell EW, Glanville J, Fernandez-Becker N, Khosla C, Chien YH, Davis MM: Dietary gluten triggers concomitant activation of CD4+ and CD8+ alphabeta T cells and gammadelta T cells in celiac disease. Proc Natl Acad Sci USA 2013;110:13073-13078.
59.
Mazzarella G, Stefanile R, Camarca A, Giliberti P, Cosentini E, Marano C, Iaquinto G, Giardullo, N, Auricchio, S, Sette, A, et al: Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology 2008;134:1017-1027.
60.
Ariotti S, Hogenbirk M, Dijkgraaf F, Visser L, Hoekstra M, Song J.-Y, Jacobs H, Haanen J, Schumacher T: Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 2014;346:101-105.
61.
Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D: Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 2014;346:98-101.
62.
Bodd M, Raki M, Tollefsen S, Fallang LE, Bergseng E, Lundin KE, Sollid LM: HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol 2010;3:594-601.
63.
Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, et al: Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005;201:139-148.
64.
van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M, Wapenaar MC, Barnardo MC, Bethel G, Holmes GK, et al: A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 2007;39:827-829.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.