Schizophrenia (SZ) is a common and debilitating psychiatric disorder with limited effective treatment options. Although highly heritable, risk for this polygenic disorder depends on the complex interplay of hundreds of common and rare variants. Translating the growing list of genetic loci significantly associated with disease into medically actionable information remains an important challenge. Thus, establishing platforms with which to validate the impact of risk variants in cell-type-specific and donor-dependent contexts is critical. Towards this, we selected and characterized a collection of 12 human induced pluripotent stem cell (hiPSC) lines derived from control donors with extremely low and high SZ polygenic risk scores (PRS). These hiPSC lines are publicly available at the California Institute for Regenerative Medicine (CIRM). The suitability of these extreme PRS hiPSCs for CRISPR-based isogenic comparisons of neurons and glia was evaluated across 3 independent laboratories, identifying 9 out of 12 meeting our criteria. We report a standardized resource of publicly available hiPSCs on which we hope to perform genome engineering and generate diverse kinds of functional data, with comparisons across studies facilitated by the use of a common set of genetic backgrounds.

1.
Sullivan
PF
,
Geschwind
DH
.
Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders
.
Cell
.
2019
;
177
(
1
):
162
83
. .
2.
Pardinas
AF
,
Holmans
P
,
Pocklington
AJ
,
Escott-Price
V
,
Ripke
S
,
Carrera
N
, et al.
Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection
.
Nat Genet
.
2018
;
50
(
3
):
381
89
.
3.
Marshall
CR
,
Howrigan
DP
,
Merico
D
,
Thiruvahindrapuram
B
,
Wu
W
,
Greer
DS
, et al.
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
.
Nat Genet
.
2017
;
49
:
27
35
.
4.
Singh
T
,
Kurki
MI
,
Curtis
D
,
Purcell
SM
,
Crooks
L
,
McRae
J
, et al.
Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders
.
Nat Neurosci
.
2016
;
19
(
4
):
571
7
. .
5.
Steinberg
S
,
Gudmundsdottir
S
,
Sveinbjornsson
G
,
Suvisaari
J
,
Paunio
T
,
Torniainen-Holm
M
, et al.
Truncating mutations in RBM12 are associated with psychosis
.
Nat Genet
.
2017
;
49
(
8
):
1251
4
. .
6.
Schizophrenia Working Group of the Psychiatric Genomics C
,
Ripke
S
,
Neale
BM
,
Corvin
A
,
Walters
JTR
,
Farh
KH
, et al.
Biological insights from 108 schizophrenia-associated genetic loci
.
Nature
.
2014
;
511
(
7510
):
421
7
. .
7.
Lee
PH
,
Anttila
V
,
Won
H
,
Feng
Y-CA
,
Rosenthal
J
,
Zhu
Z
, et al.
Genome wide meta-analysis identifies genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders
.
bioRxiv
.
2019
;
528117
.
8.
Brainstorm
C
,
Anttila
V
,
Bulik-Sullivan
B
,
Finucane
HK
,
Walters
RK
,
Bras
J
, et al.
Analysis of shared heritability in common disorders of the brain
.
Science
.
2018
;
360
.
9.
Talkowski
ME
,
Rosenfeld
JA
,
Blumenthal
I
,
Pillalamarri
V
,
Chiang
C
,
Heilbut
A
, et al.
Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries
.
Cell
.
2012
;
149
(
3
):
525
37
. .
10.
Loohuis
LM
,
Vorstman
JA
,
Ori
AP
,
Staats
KA
,
Wang
T
,
Richards
AL
, et al.
Genome-wide burden of deleterious coding variants increased in schizophrenia
.
Nat Commun
.
2015
;
6
:
7501
. .
11.
Gulsuner
S
,
Walsh
T
,
Watts
AC
,
Lee
MK
,
Thornton
AM
,
Casadei
S
, et al.
Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network
.
Cell
.
2013
;
154
(
3
):
518
29
. .
12.
Schork
AJ
,
Won
H
,
Appadurai
V
,
Nudel
R
,
Gandal
M
,
Delaneau
O
, et al.
A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment
.
Nat Neurosci
.
2019
;
22
(
3
):
353
61
. .
13.
Satterstrom
FK
,
Kosmicki
JA
,
Wang
J
,
Breen
MS
,
De Rubeis
S
,
An
JY
, et al.
Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism
.
Cell
.
2020
;
180
(
3
):
568
e23
. .
14.
Sanders
SJ
,
He
X
,
Willsey
AJ
,
Ercan-Sencicek
AG
,
Samocha
KE
,
Cicek
AE
, et al.
Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci
.
Neuron
.
2015
;
87
(
6
):
1215
33
. .
15.
Purcell
SM
,
Moran
JL
,
Fromer
M
,
Ruderfer
D
,
Solovieff
N
,
Roussos
P
, et al.
A polygenic burden of rare disruptive mutations in schizophrenia
.
Nature
.
2014
;
506
(
7487
):
185
90
. .
16.
Fromer
M
,
Pocklington
AJ
,
Kavanagh
DH
,
Williams
HJ
,
Dwyer
S
,
Gormley
P
, et al.
De novo mutations in schizophrenia implicate synaptic networks
.
Nature
.
2014
;
506
(
7487
):
179
84
. .
17.
Network Pathway Analysis Subgroup of the Psychiatric Genomics C, International Inflammatory Bowel Disease Genetics C, International Inflammatory Bowel Disease Genetics Consortium I
.
Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways
.
Nat Neurosci
.
2015
;
18
:
199
209
.
18.
Maurano
MT
,
Humbert
R
,
Rynes
E
,
Thurman
RE
,
Haugen
E
,
Wang
H
, et al.
Systematic localization of common disease-associated variation in regulatory DNA
.
Science
.
2012
;
337
(
6099
):
1190
5
. .
19.
Jaffe
AE
,
Straub
RE
,
Shin
JH
,
Tao
R
,
Gao
Y
,
Collado-Torres
L
, et al.
Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis
.
Nat Neurosci
.
2018
;
21
(
8
):
1117
25
. .
20.
Fromer
M
,
Roussos
P
,
Sieberts
SK
,
Johnson
JS
,
Kavanagh
DH
,
Perumal
TM
, et al.
Gene expression elucidates functional impact of polygenic risk for schizophrenia
.
Nat Neurosci
.
2016
;
19
(
11
):
1442
53
. .
21.
Dobbyn
A
,
Huckins
LM
,
Boocock
J
,
Sloofman
LG
,
Glicksberg
BS
,
Giambartolomei
C
, et al.
Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS
.
Am J Hum Genet
.
2018
;
102
(
6
):
1169
84
. .
22.
Girdhar
K
,
Hoffman
GE
,
Jiang
Y
,
Brown
L
,
Kundakovic
M
,
Hauberg
ME
, et al.
Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome
.
Nat Neurosci
.
2018
;
21
(
8
):
1126
36
. .
23.
Forrest
MP
,
Zhang
H
,
Moy
W
,
McGowan
H
,
Leites
C
,
Dionisio
LE
, et al.
Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci
.
Cell Stem Cell
.
2017
;
21
(
3
):
305
. .
24.
Sey
NYA
,
Hu
B
,
Mah
W
,
Fauni
H
,
McAfee
JC
,
Rajarajan
P
, et al.
A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles
.
Nature Neuro
.
2020
;
23
(
4
):
583
93
.
25.
Rajarajan
P
,
Borrman
T
,
Liao
W
,
Schrode
N
,
Flaherty
E
,
Casiño
C
, et al.
Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk
.
Science
.
2018
;
362
(
6420
):
362
. .
26.
Wray
NR
,
Wijmenga
C
,
Sullivan
PF
,
Yang
J
,
Visscher
PM
.
Common disease is more complex than implied by the core gene omnigenic model
.
Cell
.
2018
;
173
(
7
):
1573
80
. .
27.
Boyle
EA
,
Li
YI
,
Pritchard
JK
.
An expanded view of complex traits: from polygenic to omnigenic
.
Cell
.
2017
;
169
(
7
):
1177
86
. .
28.
Fang
G
,
Wang
W
,
Paunic
V
,
Heydari
H
,
Costanzo
M
,
Liu
X
, et al.
Discovering genetic interactions bridging pathways in genome-wide association studies
.
Nat Commun
.
2019
;
10
(
1
):
4274
. .
29.
Liu
X
,
Li
YI
,
Pritchard
JK
.
Trans effects on gene expression can drive omnigenic inheritance
.
Cell
.
2019
;
177
(
4
):
1022
e6
. .
30.
Schrode
N
,
Ho
SM
,
Yamamuro
K
,
Dobbyn
A
,
Huckins
L
,
Matos
MR
, et al.
Synergistic effects of common schizophrenia risk variants
.
Nat Genet
.
2019
;
51
(
10
):
1475
85
. .
31.
Brennand
K
,
Savas
JN
,
Kim
Y
,
Tran
N
,
Simone
A
,
Hashimoto-Torii
K
, et al.
Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia
.
Mol Psychiatry
.
2015
;
20
(
3
):
361
8
. .
32.
Mariani
J
,
Simonini
MV
,
Palejev
D
,
Tomasini
L
,
Coppola
G
,
Szekely
AM
, et al.
Modeling human cortical development in vitro using induced pluripotent stem cells
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
31
):
12770
5
. .
33.
Pasca
AM
,
Sloan
SA
,
Clarke
LE
,
Tian
Y
,
Makinson
CD
,
Huber
N
, et al.
Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture
.
Nat Methods
.
2015
;
12
:
671
8
.
34.
Qian
X
,
Nguyen
HN
,
Song
MM
,
Hadiono
C
,
Ogden
SC
,
Hammack
C
, et al.
Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
.
Cell
.
2016
;
165
(
5
):
1238
54
. .
35.
Nicholas
CR
,
Chen
J
,
Tang
Y
,
Southwell
DG
,
Chalmers
N
,
Vogt
D
, et al.
Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development
.
Cell Stem Cell
.
2013
;
12
(
5
):
573
86
. .
36.
Hoffman
GE
,
Hartley
BJ
,
Flaherty
E
,
Ladran
I
,
Gochman
P
,
Ruderfer
DM
, et al.
Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains
.
Nat Commun
.
2017
;
8
(
1
):
2225
. .
37.
Velasco
S
,
Kedaigle
AJ
,
Simmons
SK
,
Nash
A
,
Rocha
M
,
Quadrato
G
, et al.
Individual brain organoids reproducibly form cell diversity of the human cerebral cortex
.
Nature
.
2019
;
570
(
7762
):
523
7
. .
38.
Birey
F
,
Andersen
J
,
Makinson
CD
,
Islam
S
,
Wei
W
,
Huber
N
, et al.
Assembly of functionally integrated human forebrain spheroids
.
Nature
.
2017
;
545
(
7652
):
54
9
. .
39.
Xiang
Y
,
Tanaka
Y
,
Cakir
B
,
Patterson
B
,
Kim
KY
,
Sun
P
, et al.
hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids
.
Cell Stem Cell
.
2019
;
24
(
3
):
487
e7
. .
40.
Bagley
JA
,
Reumann
D
,
Bian
S
,
Lévi-Strauss
J
,
Knoblich
JA
.
Fused cerebral organoids model interactions between brain regions
.
Nat Methods
.
2017
;
14
(
7
):
743
51
. .
41.
Carcamo-Orive
I
,
Hoffman
GE
,
Cundiff
P
,
Beckmann
ND
,
D'Souza
SL
,
Knowles
JW
, et al.
Analysis of transcriptional variability in a large human iPSC library reveals genetic and non-genetic determinants of heterogeneity
.
Cell Stem Cell
.
2017
;
20
(
4
):
518
e9
. .
42.
Kilpinen
H
,
Goncalves
A
,
Leha
A
,
Afzal
V
,
Alasoo
K
,
Ashford
S
, et al.
Common genetic variation drives molecular heterogeneity in human iPSCs
.
Nature
.
2017
;
546
(
7658
):
370
5
. .
43.
Hoffman
GE
,
Schrode
N
,
Flaherty
E
,
Brennand
KJ
.
New considerations for hiPSC-based models of neuropsychiatric disorders
.
Mol Psychiatry
.
2019
;
24
(
1
):
49
66
. .
44.
Shalem
O
,
Sanjana
NE
,
Zhang
F
.
High-throughput functional genomics using CRISPR-Cas9
.
Nat Rev Genet
.
2015
;
16
(
5
):
299
311
. .
45.
Rajarajan
P
,
Flaherty
E
,
Akbarian
S
,
Brennand
KJ
.
CRISPR-based functional evaluation of schizophrenia risk variants
.
Schizophr Res
.
2020
;
217
:
26
36
.
46.
Schrode
N
,
Ho
SM
,
Yamamuro
K
,
Dobbyn
A
,
Huckins
L
,
Matos
MR
, et al.
Synergistic effects of common schizophrenia risk variants
.
Nat Genet
.
2019
;
51
(
10
):
1475
85
. .
47.
Pham
X
,
Song
G
,
Lao
S
,
Goff
L
,
Zhu
H
,
Valle
D
, et al.
The DPYSL2 gene connects mTOR and schizophrenia
.
Transl Psychiatry
.
2016
;
6
(
11
):
e933
. .
48.
Wen
Z
,
Nguyen
HN
,
Guo
Z
,
Lalli
MA
,
Wang
X
,
Su
Y
, et al.
Synaptic dysregulation in a human iPS cell model of mental disorders
.
Nature
.
2014
;
515
(
7527
):
414
8
. .
49.
Tai
DJ
,
Ragavendran
A
,
Manavalan
P
,
Stortchevoi
A
,
Seabra
CM
,
Erdin
S
, et al.
Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR
.
Nat Neurosci
.
2016
;
19
(
3
):
517
22
. .
50.
Kim
MS
,
Patel
KP
,
Teng
AK
,
Berens
AJ
,
Lachance
J
.
Genetic disease risks can be misestimated across global populations
.
Genome Biol
.
2018
;
19
(
1
):
179
. .
51.
Chambers
SM
,
Mica
Y
,
Lee
G
,
Studer
L
,
Tomishima
MJ
.
Dual-SMAD inhibition/WNT activation-based methods to induce neural crest and derivatives from human pluripotent stem cells
.
Methods Mol Biol
.
2016
;
1307
:
329
43
. .
52.
Zhang
Y
,
Pak
C
,
Han
Y
,
Ahlenius
H
,
Zhang
Z
,
Chanda
S
, et al.
Rapid single-step induction of functional neurons from human pluripotent stem cells
.
Neuron
.
2013
;
78
(
5
):
785
98
. .
53.
Yang
N
,
Chanda
S
,
Marro
S
,
Ng
YH
,
Janas
JA
,
Haag
D
, et al.
Generation of pure GABAergic neurons by transcription factor programming
.
Nat Methods
.
2017
;
14
(
6
):
621
. .
54.
Barretto
N
,
Zhang
H
,
Powell
SK
,
Fernando
MB
,
Zhang
S
,
Flaherty
EK
, et al.
ASCL1- and DLX2-induced GABAergic neurons from hiPSC-derived NPCs
.
J Neurosci Methods
.
2020
;
334
:
108548
. .
55.
Caiazzo
M
,
Dell'Anno
MT
,
Dvoretskova
E
,
Lazarevic
D
,
Taverna
S
,
Leo
D
, et al.
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts
.
Nature
.
2011
;
476
(
7359
):
224
7
. .
56.
Kim
J
,
Su
SC
,
Wang
H
,
Cheng
AW
,
Cassady
JP
,
Lodato
MA
, et al.
Functional integration of dopaminergic neurons directly converted from mouse fibroblasts
.
Cell Stem Cell
.
2011
;
9
(
5
):
413
. .
57.
Addis
RC
,
Hsu
FC
,
Wright
RL
,
Dichter
MA
,
Coulter
DA
,
Gearhart
JD
.
Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector
.
PLoS One
.
2011
;
6
(
12
):
e28719
. .
58.
Canals
I
,
Ginisty
A
,
Quist
E
,
Timmerman
R
,
Fritze
J
,
Miskinyte
G
, et al.
Rapid and efficient induction of functional astrocytes from human pluripotent stem cells
.
Nat Methods
.
2018
;
15
(
9
):
693
6
. .
59.
Koblan
LW
,
Doman
JL
,
Wilson
C
,
Levy
JM
,
Tay
T
,
Newby
GA
, et al.
Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction
.
Nat Biotechnol
.
2018
;
36
(
9
):
843
6
. .
60.
Ran
FA
,
Hsu
PD
,
Wright
J
,
Agarwala
V
,
Scott
DA
,
Zhang
F
.
Genome engineering using the CRISPR-Cas9 system
.
Nat Protoc
.
2013
;
8
(
11
):
2281
308
. .
61.
Zhang
S
,
Zhang
H
,
Zhou
Y
,
Qiao
M
,
Zhao
S
,
Kozlova
A
, et al.
Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants
.
Science
.
2020
;
369
(
6503
):
561
5
. .
62.
Rehbach
K
,
Kesavan
J
,
Hauser
S
,
Ritzenhofen
S
,
Jungverdorben
J
,
Schüle
R
, et al.
Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons
.
Sci Rep
.
2019
;
9
(
1
):
9615
. .
63.
Skene
NG
,
Bryois
J
,
Bakken
TE
,
Breen
G
,
Crowley
JJ
,
Gaspar
H
, et al.
Genetic identification of brain cell types underlying schizophrenia
.
bioRxiv
.
2017
;
50
(
6
):
825
33
.
64.
Dong
X
,
Liao
Z
,
Gritsch
D
,
Hadzhiev
Y
,
Bai
Y
,
Locascio
JJ
, et al.
Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease
.
Nat Neurosci
.
2018
;
21
(
10
):
1482
92
. .
65.
Birnbaum
R
,
Jaffe
AE
,
Chen
Q
,
Shin
JH
,
BrainSeq
C
,
Kleinman
JE
, et al.
Investigating the neuroimmunogenic architecture of schizophrenia
.
Mol Psychiatry
.
2018
;
23
(
5
):
1251
60
. .
66.
Zhang
S
,
Zhang
H
,
Qiao
M
,
Zhou
Y
,
Zhao
S
,
Kozlova
A
, et al.
Allele-specific open chromatin in human iPSC neurons elucidates functional non-coding disease variants
.
bioRxiv
.
2019
;
827048
.
67.
Doostparast Torshizi
A
,
Armoskus
C
,
Zhang
H
,
Forrest
MP
,
Zhang
S
,
Souaiaia
T
, et al.
Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia
.
Sci Adv
.
2019
;
5
(
9
):
eaau4139
. .
68.
Yan
Y
,
Shin
S
,
Jha
BS
,
Liu
Q
,
Sheng
J
,
Li
F
, et al.
Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells
.
Stem Cells Transl Med
.
2013
;
2
(
11
):
862
70
. .
69.
Huckins
LM
,
Dobbyn
A
,
Ruderfer
DM
,
Hoffman
G
,
Wang
W
,
Pardiñas
AF
, et al.
Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
.
Nat Genet
.
2019
;
51
(
4
):
659
74
. .
70.
Schizophrenia Working Group of the Psychiatric Genomics C
.
Biological insights from 108 schizophrenia-associated genetic loci
.
Nature
.
2014
;
511
(
7510
):
421
7
. .
71.
Li
K
,
Wang
G
,
Andersen
T
,
Zhou
P
,
Pu
WT
.
Optimization of genome engineering approaches with the CRISPR/Cas9 system
.
PLoS One
.
2014
;
9
(
8
):
e105779
. .
72.
Huang
TP
,
Zhao
KT
,
Miller
SM
,
Gaudelli
NM
,
Oakes
BL
,
Fellmann
C
, et al.
Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors
.
Nat Biotechnol
.
2019
;
37
(
6
):
626
31
. .
73.
Volpato
V
,
Smith
J
,
Sandor
C
,
Ried
JS
,
Baud
A
,
Handel
A
, et al.
Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: a multi-site omics study
.
Stem Cell Reports
.
2018
;
11
(
4
):
897
911
. .
74.
Sullivan
PF
,
Agrawal
A
,
Bulik
CM
,
Andreassen
OA
,
Borglum
AD
,
Breen
G
, et al.
Psychiatric genomics C: psychiatric genomics: an update and an agenda
.
Am J Psychiatry
.
2018
;
175
:
15
27
.
75.
Choi
SW
,
O’Reilly
PF
.
PRSice-2: polygenic risk score software for biobank-scale data
.
Gigascience
.
2019
;
8
(
7
)
giz082
. .
76.
Wainschtein
P
,
Jain
DP
,
Yengo
L
,
Zheng
Z
,
Cupples
LA
,
Shadyab
AH
, et al.
Recovery of trait heritability from whole genome sequence data
.
bioRxiv
.
2019
;
588020
.
77.
Martin
AR
,
Gignoux
CR
,
Walters
RK
,
Wojcik
GL
,
Neale
BM
,
Gravel
S
, et al.
Human demographic history impacts genetic risk prediction across diverse populations
.
Am J Hum Genet
.
2017
;
100
(
4
):
635
49
. .
78.
Duncan
L
,
Shen
H
,
Gelaye
B
,
Meijsen
J
,
Ressler
K
,
Feldman
M
, et al.
Analysis of polygenic risk score usage and performance in diverse human populations
.
Nat Commun
.
2019
;
10
(
1
):
3328
. .
79.
Bigdeli
TB
,
Genovese
G
,
Georgakopoulos
P
,
Meyers
JL
,
Peterson
RE
,
Iyegbe
CO
, et al.
Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry
.
Mol Psychiatry
.
2020
;
25
(
10
):
2455
67
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.