Introduction: Surgical reconstruction is recommended for cleft palate patients. However, improper muscle reconstruction can cause scarring and velopharyngeal insufficiency. Understanding the developmental patterns of soft palatal musculature is crucial for improving treatments. Although mice are commonly used to investigate soft palate development, the uvula deficiency in mice limits their applicability. This study aimed to compare the developmental characteristics of soft palate muscles in miniature pigs and mice at various stages to better understand the patterns in large mammals. Methods: Specimens of soft palate were collected from human embryos, miniature pigs, and mice at different stages. Furthermore, comprehensive gross observations, haematoxylin and eosin staining, and immunohistochemical analyses for myosin heavy chain and hypermethylated cancer 1 (Hic1) were conducted on multiple dissected sections. Results: Mature soft palatal musculature exhibited anatomical and histological similarities across the three species. Notably, miniature pigs exhibited the uvula structure and uvula muscle (MU) development comparable to humans. Embryonic day 40 (E40, equivalent to human embryonic week 11, E11w) represented the early developmental stage of the MU, characterized by scattered muscle cells not yet coalescing into multinucleated fibres. By E45 (aligned with human E12w), the muscle bundles reached maturity, exhibiting two oriented fibre bundles flanking the midline. Levator veli palatini muscle and palatopharyngeus of miniature pigs exhibited a distinct course pattern due to the presence of the MU. Hic1+ perimysial cells were observed at the extending edge of the developing palatopharyngeus of miniature pigs, indicating a potential guiding role in the migration of myogenic cells. Conclusion: Characterized by the MU, the spatiotemporal dynamic process of soft palatal musculature of miniature pigs was revealed. Miniature pigs exhibit a similar structure of the MU to that of humans and therefore serve as a promising model for researching soft palatal musculature development of large mammals in the future.

Cleft palate (CP) is a condition where the roof of the mouth fails to fuse. Understanding the muscle anatomy in this region is crucial for improving surgical outcomes. In this study, we focused on the development of soft palate muscles in miniature pigs and compared it with humans and mice. Since the uvula muscle (MU) is essential for proper dynamic velopharyngeal closure, we compared the anatomical characteristics of this muscle across the three species. Specifically, we documented the origin and insertion points, adjacent structures, and critical developmental stages of the MU. Comparative analysis demonstrated that miniature pigs – unlike mice – exhibit remarkable similarity to humans in terms of uvula morphology, MU development, and anatomical characteristics. We further compared interspecies anatomical differences in other muscle types between miniature pigs and mice. Our findings strongly suggest that miniature pigs represent a promising model for studying human soft palatal musculature development, which could lead to improved surgical techniques and outcomes for CP patients.

1.
Burg
ML
,
Chai
Y
,
Yao
CA
,
Magee
W
3rd
,
Figueiredo
JC
.
Epidemiology, etiology, and treatment of isolated cleft palate
.
Front Physiol
.
2016
;
7
:
67
.
2.
Dixon
MJ
,
Marazita
ML
,
Beaty
TH
,
Murray
JC
.
Cleft lip and palate: understanding genetic and environmental influences
.
Nat Rev Genet
.
2011
;
12
(
3
):
167
78
.
3.
Elander
A
,
Persson
C
,
Lilja
J
,
Mark
H
.
Isolated cleft palate requires different surgical protocols depending on cleft type
.
J Plast Surg Hand Surg
.
2017
;
51
(
4
):
228
34
.
4.
Carvajal Monroy
PL
,
Grefte
S
,
Kuijpers-Jagtman
AM
,
Wagener
FA
,
Von den Hoff
JW
.
Strategies to improve regeneration of the soft palate muscles after cleft palate repair
.
Tissue Eng B Rev
.
2012
;
18
(
6
):
468
77
.
5.
Precious
DS
,
Delaire
J
.
Clinical observations of cleft lip and palate
.
Oral Surg Oral Med Oral Pathol
.
1993
;
75
(
2
):
141
51
.
6.
Di
W
,
Zhao
J
,
Ma
H
,
Song
T
,
Wang
Y
,
Yin
N
.
Three-dimensional anatomy of the palatopharyngeus and its relation to the levator veli palatini based on micro-computed tomography
.
Plast Reconstr Surg
.
2021
;
148
(
3
):
389e
97e
.
7.
Back
GW
,
Nadig
S
,
Uppal
S
,
Coatesworth
AP
.
Why do we have a uvula?: literature review and a new theory
.
Clin Otolaryngol Allied Sci
.
2004
;
29
(
6
):
689
93
.
8.
Sandy
J
,
Davies
A
,
Humphries
K
,
Ireland
T
,
Wren
Y
.
Cleft lip and palate: Care configuration, national registration, and research strategies
.
J World Fed Orthod
.
2020
;
9
(
3s
):
S40
44
.
9.
Langdon
HL
,
Klueber
K
.
The longitudinal fibromuscular component of the soft palate in the fifteen-week human fetus: musculus uvulae and palatine raphe
.
Cleft Palate J
.
1978
;
15
(
4
):
337
48
.
10.
Gritli-Linde
A
.
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models
.
Curr Top Dev Biol
.
2008
;
84
:
37
138
.
11.
Grimaldi
A
,
Parada
C
,
Chai
Y
.
A comprehensive study of soft palate development in mice
.
PLoS One
.
2015
;
10
(
12
):
e0145018
.
12.
Weng
M
,
Chen
Z
,
Xiao
Q
,
Li
R
,
Chen
Z
.
A review of FGF signaling in palate development
.
Biomed Pharmacother
.
2018
;
103
:
240
7
.
13.
Li
J
,
Rodriguez
G
,
Han
X
,
Janečková
E
,
Kahng
S
,
Song
B
, et al
.
Regulatory mechanisms of soft palate development and malformations
.
J Dent Res
.
2019
;
98
(
9
):
959
67
.
14.
Lin
X
,
Li
Q
,
Hu
L
,
Jiang
C
,
Wang
S
,
Wu
X
.
Apical papilla regulates dental follicle fate via the OGN-hh pathway
.
J Dent Res
.
2023
;
102
(
4
):
431
9
.
15.
Wu
X
,
Li
Y
,
Wang
F
,
Hu
L
,
Li
Y
,
Wang
J
, et al
.
Spatiotemporal expression of wnt/β-catenin signaling during morphogenesis and odontogenesis of deciduous molar in miniature pig
.
Int J Biol Sci
.
2017
;
13
(
8
):
1082
91
.
16.
Wu
X
,
Hu
J
,
Li
G
,
Li
Y
,
Li
Y
,
Zhang
J
, et al
.
Biomechanical stress regulates mammalian tooth replacement via the integrin β1-RUNX2-Wnt pathway
.
Embo j
.
2020
;
39
(
3
):
e102374
.
17.
Liu
Y
,
Qin
K
,
Bao
Y
,
Liu
W
,
Sang
C
,
Chen
T
, et al
.
Mechanical remodeling of pharyngeal tissues in a pig low upper airway pressure model of obstructive sleep apnea-hypopnea syndrome
.
J Jiangsu Univ Med Ed
.
2007
;
17
(
4
):
277
82
.
18.
Buckingham
M
,
Vincent
SD
.
Distinct and dynamic myogenic populations in the vertebrate embryo
.
Curr Opin Genet Dev
.
2009
;
19
(
5
):
444
53
.
19.
Yamane
A
.
Embryonic and postnatal development of masticatory and tongue muscles
.
Cell Tissue Res
.
2005
;
322
(
2
):
183
9
.
20.
König
HE
,
Liebich
HG
.
Veterinary anatomy of domestic animals: textbook and colour atlas
.
Stuttgart
:
Thieme
;
2020
.
21.
Parada
C
,
Han
D
,
Chai
Y
.
Molecular and cellular regulatory mechanisms of tongue myogenesis
.
J Dent Res
.
2012
;
91
(
6
):
528
35
.
22.
Sugii
H
,
Grimaldi
A
,
Li
J
,
Parada
C
,
Vu-Ho
T
,
Feng
J
, et al
.
The Dlx5-FGF10 signaling cascade controls cranial neural crest and myoblast interaction during oropharyngeal patterning and development
.
Development
.
2017
;
144
(
21
):
4037
45
.
23.
Mossey
PA
,
Little
J
,
Munger
RG
,
Dixon
MJ
,
Shaw
WC
.
Cleft lip and palate
.
Lancet
.
2009
;
374
(
9703
):
1773
85
.
24.
Danescu
A
,
Mattson
M
,
Dool
C
,
Diewert
VM
,
Richman
JM
.
Analysis of human soft palate morphogenesis supports regional regulation of palatal fusion
.
J Anat
.
2015
;
227
(
4
):
474
86
.
25.
Cohen
SR
,
Chen
L
,
Trotman
CA
,
Burdi
AR
.
Soft-palate myogenesis: a developmental field paradigm
.
Cleft Palate Craniofac J
.
1993
;
30
(
5
):
441
6
.
26.
Zhao
J
,
Ma
H
,
Wang
Y
,
Song
T
,
Jiang
C
,
Wu
D
, et al
.
Micro-computed tomography-based three-dimensional anatomical structure of the region around the pterygoid hamulus
.
Cleft Palate Craniofac J
.
2022
;
59
(
7
):
918
25
.
27.
Finkelstein
Y
,
Meshorer
A
,
Talmi
YP
,
Zohar
Y
,
Brenner
J
,
Gal
R
.
The riddle of the uvula
.
Otolaryngol Head Neck Surg
.
1992
;
107
(
3
):
444
50
.
28.
Varghese
J
,
Kirsch
C
.
Magnetic resonance imaging of the oral cavity and oropharynx
.
Top Magn Reson Imaging
.
2021
;
30
(
2
):
79
83
.
29.
Huang
MH
,
Lee
ST
,
Rajendran
K
.
Structure of the musculus uvulae: functional and surgical implications of an anatomic study
.
Cleft Palate Craniofac J
.
1997
;
34
(
6
):
466
74
.
30.
Azzam
NA
,
Kuehn
DP
.
The morphology of musculus uvulae
.
Cleft Palate J
.
1977
;
14
(
4
):
331
.
31.
Podvinec
S
.
The physiology and pathology of the soft palate
.
J Laryngol Otol
.
1952
;
66
(
9
):
452
61
.
32.
Wyszynski
DF
.
Cleft lip and palate: from origin to treatment
.
New York
:
Oxford University Press
;
2002
.
33.
Sun
L
,
Wang
J
,
Liu
H
,
Fan
Z
,
Wang
S
,
Du
J
.
A comprehensive study of palate development in miniature pig
.
Anat Rec
.
2017
;
300
(
8
):
1409
19
.
34.
Bush
JO
,
Jiang
R
.
Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development
.
Development
.
2012
;
139
(
2
):
231
43
.
35.
Ferguson
MW
.
Palate development
.
Development
.
1988
;
103
(
Suppl l
):
41
60
.
36.
Sefton
EM
,
Kardon
G
.
Connecting muscle development, birth defects, and evolution: an essential role for muscle connective tissue
.
Curr Top Dev Biol
.
2019
;
132
:
137
76
.
37.
Carmena
A
,
Bate
M
,
Jiménez
F
.
Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis
.
Genes Dev
.
1995
;
9
(
19
):
2373
83
.
38.
Gunage
RD
,
Dhanyasi
N
,
Reichert
H
,
VijayRaghavan
K
.
Drosophila adult muscle development and regeneration
.
Semin Cell Dev Biol
.
2017
;
72
:
56
66
.
39.
Wu
XS
,
Yeh
CY
,
Harn
HI
,
Jiang
TX
,
Wu
P
,
Widelitz
RB
, et al
.
Self-assembly of biological networks via adaptive patterning revealed by avian intradermal muscle network formation
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
22
):
10858
67
.
40.
Buckingham
M
,
Rigby
PW
.
Gene regulatory networks and transcriptional mechanisms that control myogenesis
.
Dev Cell
.
2014
;
28
(
3
):
225
38
.
41.
Sambasivan
R
,
Kuratani
S
,
Tajbakhsh
S
.
An eye on the head: the development and evolution of craniofacial muscles
.
Development
.
2011
;
138
(
12
):
2401
15
.
42.
Feng
J
,
Han
X
,
Yuan
Y
,
Cho
CK
,
Janečková
E
,
Guo
T
, et al
.
TGF-β signaling and Creb5 cooperatively regulate Fgf18 to control pharyngeal muscle development
.
Elife
.
2022
;
11
:
e80405
.
43.
Han
A
,
Zhao
H
,
Li
J
,
Pelikan
R
,
Chai
Y
.
ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions
.
Mol Cell Biol
.
2014
;
34
(
16
):
3120
31
.
44.
Han
X
,
Feng
J
,
Guo
T
,
Loh
YHE
,
Yuan
Y
,
Ho
TV
, et al
.
Runx2-Twist1 interaction coordinates cranial neural crest guidance of soft palate myogenesis
.
Elife
.
2021
;
10
:
e62387
.
45.
Scott
RW
,
Arostegui
M
,
Schweitzer
R
,
Rossi
FMV
,
Underhill
TM
.
Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration
.
Cell Stem Cell
.
2019
;
25
(
6
):
797
813.e9
.
46.
Iwata
J
,
Suzuki
A
,
Yokota
T
,
Ho
TV
,
Pelikan
R
,
Urata
M
, et al
.
TGFβ regulates epithelialmesenchymal interactions through WNT signaling activity to control muscle development in the soft palate
.
Development
.
2014
;
141
(
4
):
909
17
.
47.
Yu
L
,
Gu
S
,
Alappat
S
,
Song
Y
,
Yan
M
,
Zhang
X
, et al
.
Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate
.
Development
.
2005
;
132
(
19
):
4397
406
.
You do not currently have access to this content.