Introduction: Cytosolic carboxypeptidase 1 (CCP1) is a deglutamylase that antagonizes polyglutamylation. Mutations in human CCP1 gene cause a severe disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), which is characterized by marked growth retardation. However, the role and mechanisms of CCP1 in skeletal development remain unclear. Methods: In this study, we used CCP1 knockout (CCP1-KO) mice to assess bone mass changes by micro-CT, HE, alkaline phosphatase (ALP) staining, tartrate-resistant acid phosphatase staining and immunofluorescence staining. Changes in osteogenic differentiation, proliferation, and migration capacity of bone marrow mesenchymal stem cells (BMSCs) were assessed by ALP, alizarin red (ARS) staining, quantitative real-time PCR, EdU staining, and cell scratching assay. Then, tubulin glutamylation and primary cilia of BMSCs after deletion of CCP1 was analyzed by Western blot and immunofluorescence staining. Finally, CB839, an inhibitor of glutamine metabolism, was used to detect changes in the osteogenic differentiation ability and primary cilia of BMSCs after reducing the elevated glutamylation level. Results:CCP1-KO mice exhibited phenotypes relevant to humans, including reduced body size, decreased bone mass, and reduced bone density during growth and development. CCP1 deficiency impairs the proliferation, migration, and osteogenic differentiation of BMSCs. Meanwhile, the number of pre-osteoblasts derived from BMSCs is decreased, leading to impaired osteogenesis. At the cellular level, CCP1 loss results in aberrant tubulin glutamylation, increased microtubule glutamylation, and shortened primary cilia in BMSCs. Finally, reduction of abnormally elevated tubulin glutamylation was efficacious for promoting osteogenic differentiation of BMSCs and restoring primary cilia length of BMSCs. Conclusion: We propose that CCP1 plays a critical role in regulating BMSCs differentiation and promotes osteogenesis by modulating the post-translational modifications of tubulin, with a view to provide new targets for the prevention and treatment of hard tissue diseases.

1.
Sheffer
R
,
Gur
M
,
Brooks
R
,
Salah
S
,
Daana
M
,
Fraenkel
N
, et al
.
Biallelic variants in AGTPBP1, involved in tubulin deglutamylation, are associated with cerebellar degeneration and motor neuropathy
.
Eur J Hum Genet
.
2019
;
27
(
9
):
1419
26
.
2.
Türay
S
,
Eröz
R
,
Başak
AN
.
A novel pathogenic variant in the 3’ end of the AGTPBP1 gene gives rise to neurodegeneration without cerebellar atrophy: an expansion of the disease phenotype
.
Neurogenetics
.
2021
;
22
(
2
):
127
32
.
3.
Shashi
V
,
Magiera
MM
,
Klein
D
,
Zaki
M
,
Schoch
K
,
Rudnik-Schöneborn
S
, et al
.
Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration
.
EMBO J
.
2018
;
37
(
23
):
e100540
.
4.
Power
KM
,
Nguyen
KC
,
Silva
A
,
Singh
S
,
Hall
DH
,
Rongo
C
, et al
.
NEKL-4 regulates microtubule stability and mitochondrial health in ciliated neurons
.
J Cel Biol
.
2024
;
223
(
9
):
e202402006
.
5.
Kalinina
E
,
Biswas
R
,
Berezniuk
I
,
Hermoso
A
,
Aviles
FX
,
Fricker
LD
.
A novel subfamily of mouse cytosolic carboxypeptidases
.
FASEB J
.
2007
;
21
(
3
):
836
50
.
6.
Rogowski
K
,
Van Dijk
J
,
Magiera
MM
,
Bosc
C
,
Deloulme
J-C
,
Bosson
A
, et al
.
A family of protein-deglutamylating enzymes associated with neurodegeneration
.
Cell
.
2010
;
143
(
4
):
564
78
.
7.
Vega
MR
,
Sevilla
RG
,
Hermoso
A
,
Lorenzo
J
,
Tanco
S
,
Diez
A
, et al
.
Nnal-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily
.
FASEB j
.
2007
;
21
(
3
):
851
65
.
8.
Mercey
O
,
Magiera
,
MM
,
Lebrun
L
,
Kostic
C
,
Moulin
A
, et al
.
Glutamylation imbalance impairs the molecular architecture of the photoreceptor cilium
.
EMBO J
.
2024
;
43
(
24
):
6679
704
.
9.
Kimura
Y
,
Kurabe
N
,
Ikegami
K
,
Tsutsumi
K
,
Konishi
Y
,
Kaplan
OI
, et al
.
Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs)
.
J Biol Chem
.
2010
;
285
(
30
):
22936
41
.
10.
Janke
C
,
Magiera
MM
.
The tubulin code and its role in controlling microtubule properties and functions
.
Nat Rev Mol Cel Biol
.
2020
;
21
(
6
):
307
26
.
11.
Baltanás
FC
,
Berciano
MT
,
Santos
E
,
Lafarga
M
.
The childhood-onset neurodegeneration with cerebellar atrophy (CONDCA) disease caused by AGTPBP1 gene mutations: the Purkinje cell degeneration mouse as an animal model for the study of this human disease
.
Biomedicines
.
2021
;
9
(
9
):
1157
.
12.
Fernandez-Gonzalez
A
,
La Spada
AR
,
Treadaway
J
,
Higdon
JC
,
Harris
BS
,
Sidman
RL
, et al
.
Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1
.
Science
.
2002
;
295
(
5561
):
1904
6
.
13.
Zhou
L
,
Hossain
MI
,
Yamazaki
M
,
Abe
M
,
Natsume
R
,
Konno
K
, et al
.
Deletion of exons encoding carboxypeptidase domain of Nna1 results in Purkinje cell degeneration (pcd) phenotype
.
J Neurochem
.
2018
;
147
(
4
):
557
72
.
14.
Pang
B
,
Araki
A
,
Zhou
L
,
Takebayashi
H
,
Harada
T
,
Kadota
K
.
CCP1, a regulator of tubulin post-translational modifications, potentially plays an essential role in cerebellar development
.
Int J Mol Sci
.
2023
;
24
(
6
):
5335
.
15.
Gilmore-Hall
S
,
Kuo
J
,
Ward
JM
,
Zahra
R
,
Morrison
RS
,
Perkins
G
, et al
.
CCP1 promotes mitochondrial fusion and motility to prevent Purkinje cell neuron loss in pcd mice
.
J Cel Biol
.
2019
;
218
(
1
):
206
19
.
16.
Chen
L
,
Shi
K
,
Ditzel
N
,
Qiu
W
,
Figeac
F
,
Nielsen
LHD
, et al
.
KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration
.
Nat Commun
.
2023
;
14
(
1
):
2016
.
17.
Zheng
Z
,
Wu
L
,
Li
Z
,
Tang
R
,
Li
H
,
Huang
Y
, et al
.
Mir155 regulates osteogenesis and bone mass phenotype via targeting S1pr1 gene
.
eLife
.
2023
;
12
:
e77742
.
18.
Shen
G
,
Zhang
H
,
Jia
P
,
Li
G
,
Wang
X
,
Zhou
X
, et al
.
GOLM1 stimulation of glutamine metabolism promotes osteoporosis via inhibiting osteogenic differentiation of BMSCs
.
Cell Physiol Biochem
.
2018
;
50
(
5
):
1916
28
.
19.
Li
H
,
Ghazanfari
R
,
Zacharaki
D
,
Lim
HC
,
Scheding
S
.
Isolation and characterization of primary bone marrow mesenchymal stromal cells
.
Ann N Y Acad Sci
.
2016
;
1370
(
1
):
109
18
.
20.
Chen
Q
,
Shou
P
,
Zheng
C
,
Jiang
M
,
Cao
G
,
Yang
Q
, et al
.
Fate decision of mesenchymal stem cells: adipocytes or osteoblasts
.
Cell Death Differ
.
2016
;
23
(
7
):
1128
39
.
21.
Cai
M
,
Xiao
B
,
Jin
F
,
Xu
X
,
Hua
Y
,
Li
J
, et al
.
Generation of functional oligopeptides that promote osteogenesis based on unsupervised deep learning of protein IDRs
.
Bone Res
.
2022
;
10
(
1
):
23
.
22.
Li
Y
,
Sun
W
,
Li
J
,
Du
R
,
Xing
W
,
Yuan
X
, et al
.
HuR-mediated nucleocytoplasmic translocation of HOTAIR relieves its inhibition of osteogenic differentiation and promotes bone formation
.
Bone Res
.
2023
;
11
(
1
):
53
.
23.
Salhotra
A
,
Shah
HN
,
Levi
B
,
Longaker
MT
.
Mechanisms of bone development and repair
.
Nat Rev Mol Cel Biol
.
2020
;
21
(
11
):
696
711
.
24.
Su
P
,
Tian
Y
,
Yang
C
,
Ma
X
,
Wang
X
,
Pei
J
, et al
.
Mesenchymal stem cell migration during bone formation and bone diseases therapy
.
Int J Mol Sci
.
2018
;
19
(
8
):
2343
.
25.
Raggatt
LJ
,
Partridge
NC
.
Cellular and molecular mechanisms of bone remodeling
.
J Biol Chem
.
2010
;
285
(
33
):
25103
8
.
26.
Dirckx
N
,
Moorer
MC
,
Clemens
TL
,
Riddle
RC
.
The role of osteoblasts in energy homeostasis
.
Nat Rev Endocrinol
.
2019
;
15
(
11
):
651
65
.
27.
Rodríguez de la Vega Otazo
M
,
Lorenzo
J
,
Tort
O
,
Avilés
FX
,
Bautista
JM
.
Functional segregation and emerging role of cilia-related cytosolic carboxypeptidases (CCPs)
.
FASEB J Off Publ Fed Am Soc Exp Biol
.
2013
;
27
(
2
):
424
31
.
28.
Kim
J
,
Lee
JE
,
Heynen-Genel
S
,
Suyama
E
,
Ono
K
,
Lee
K
, et al
.
Functional genomic screen for modulators of ciliogenesis and cilium length
.
Nature
.
2010
;
464
(
7291
):
1048
51
.
29.
Wloga
D
,
Joachimiak
E
,
Louka
P
,
Gaertig
J
.
Posttranslational modifications of tubulin and cilia
.
Cold Spring Harb Perspect Biol
.
2017
;
9
(
6
):
a028159
.
30.
Anvarian
Z
,
Mykytyn
K
,
Mukhopadhyay
S
,
Pedersen
LB
,
Christensen
ST
.
Cellular signalling by primary cilia in development, organ function and disease
.
Nat Rev Nephrol
.
2019
;
15
(
4
):
199
219
.
31.
Chen
Y
,
Fan
Q
,
Zhang
H
,
Tao
D
,
Wang
Y
,
Yue
R
, et al
.
Lineage tracing of cells expressing the ciliary gene IFT140 during bone development
.
Dev Dyn
.
2021
;
250
(
4
):
574
83
.
32.
Hong
S-R
,
Wang
C-L
,
Huang
Y-S
,
Chang
Y-C
,
Chang
Y-C
,
Pusapati
GV
, et al
.
Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling
.
Nat Commun
.
2018
;
9
(
1
):
1732
.
33.
Tao
D
,
Zhang
L
,
Ding
Y
,
Tang
N
,
Xu
X
,
Li
G
, et al
.
Primary cilia support cartilage regeneration after injury
.
Int J Oral Sci
.
2023
;
15
(
1
):
22
.
34.
Li
S
,
Zhang
H
,
Sun
Y
.
Primary cilia in hard tissue development and diseases
.
Front Med
.
2021
;
15
(
5
):
657
78
.
35.
Lee
MN
,
Song
JH
,
Oh
S-H
,
Tham
NT
,
Kim
J-W
,
Yang
J-W
, et al
.
The primary cilium directs osteopontin-induced migration of mesenchymal stem cells by regulating CD44 signaling and Cdc42 activation
.
Stem Cel Res
.
2020
;
45
:
101799
.
36.
Johnson
GP
,
Fair
S
,
Hoey
DA
.
Primary cilium-mediated MSC mechanotransduction is dependent on Gpr161 regulation of hedgehog signalling
.
Bone
.
2021
;
145
:
115846
.
37.
Sun
Y
,
Cai
M
,
Zhong
J
,
Yang
L
,
Xiao
J
,
Jin
F
, et al
.
The long noncoding RNA lnc-ob1 facilitates bone formation by upregulating Osterix in osteoblasts
.
Nat Metab
.
2019
;
1
(
4
):
485
96
.
38.
Van Dijk
J
,
Rogowski
K
,
Miro
J
,
Lacroix
B
,
Eddé
B
,
Janke
C
.
A targeted multienzyme mechanism for selective microtubule polyglutamylation
.
Mol Cel
.
2007
;
26
(
3
):
437
48
.
39.
He
K
,
Ma
X
,
Xu
T
,
Li
Y
,
Hodge
A
,
Zhang
Q
, et al
.
Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules
.
Nat Commun
.
2018
;
9
(
1
):
3310
.
40.
Tort
O
,
Tanco
S
,
Rocha
C
,
Bièche
I
,
Seixas
C
,
Bosc
C
, et al
.
The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids
.
Mol Biol Cel
.
2014
;
25
(
19
):
3017
27
.
41.
Ramadan
YH
,
Gu
A
,
Ross
N
,
McEwan
SA
,
Barr
MM
,
Firestein
BL
, et al
.
CCP1, a tubulin deglutamylase, increases survival of rodent spinal cord neurons following glutamate-induced excitotoxicity
.
eNeuro
.
2021
;
8
(
2
):
0431
20.2021
.
42.
Magiera
MM
,
Bodakuntla
S
,
Žiak
J
,
Lacomme
S
,
Marques Sousa
P
,
Leboucher
S
, et al
.
Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport
.
EMBO J
.
2018
;
37
(
23
):
e100440
.
43.
Bianco
P
,
Cao
X
,
Frenette
PS
,
Mao
JJ
,
Robey
PG
,
Simmons
PJ
, et al
.
The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine
.
Nat Med
.
2013
;
19
(
1
):
35
42
.
44.
Fu
X
,
Liu
G
,
Halim
A
,
Ju
Y
,
Luo
Q
,
Song
G
.
Mesenchymal stem cell migration and tissue repair
.
Cells
.
2019
;
8
(
8
):
784
.
45.
Zhang
X
,
Wang
G
,
Wang
W
,
Ran
C
,
Piao
F
,
Ma
Z
, et al
.
Bone marrow mesenchymal stem cells paracrine TGF-β1 to mediate the biological activity of osteoblasts in bone repair
.
Cytokine
.
2023
;
164
:
156139
.
46.
Gomathi
K
,
Akshaya
N
,
Srinaath
N
,
Moorthi
A
,
Selvamurugan
N
.
Regulation of Runx2 by post-translational modifications in osteoblast differentiation
.
Life Sci
.
2020
;
245
:
117389
.
47.
Genova
M
,
Grycova
L
,
Puttrich
V
,
Magiera
MM
,
Lansky
Z
,
Janke
C
, et al
.
Tubulin polyglutamylation differentially regulates microtubule-interacting proteins
.
EMBO J
.
2023
;
42
(
5
):
e112101
.
48.
Yu
I
,
Garnham
CP
,
Roll-Mecak
A
.
Writing and reading the tubulin code
.
J Biol Chem
.
2015
;
290
(
28
):
17163
72
.
49.
Janke
C
,
Rogowski
K
,
Wloga
D
,
Regnard
C
,
Kajava
AV
,
Strub
J-M
, et al
.
Tubulin polyglutamylase enzymes are members of the TTL domain protein family
.
Science
.
2005
;
308
(
5729
):
1758
62
.
50.
Tummala
P
,
Arnsdorf
EJ
,
Jacobs
CR
.
The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment
.
Cell Mol Bioeng
.
2010
;
3
(
3
):
207
12
.
51.
Chen
H
,
Xiao
H
,
Wu
B
,
Shi
X
,
Guan
C
,
Hu
J
, et al
.
The effects of primary cilia-mediated mechanical stimulation on nestin+-BMSCs during bone-tendon healing
.
J Adv Res
.
2024
;
S2090-1232
(
24
).
52.
O’Hagan
R
,
Piasecki
BP
,
Silva
M
,
Phirke
P
,
Nguyen
KCQ
,
Hall
DH
, et al
.
The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans
.
Curr Biol
.
2011
;
21
(
20
):
1685
94
.
53.
Satir
P
,
Christensen
ST
.
Overview of structure and function of mammalian cilia
.
Annu Rev Physiol
.
2007
;
69
(
1
):
377
400
.
54.
Labour
M-N
,
Riffault
M
,
Christensen
ST
,
Hoey
DA
.
TGFβ1 – induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner
.
Sci Rep
.
2016
;
6
:
35542
.
55.
Li
G
,
Liu
M
,
Zhang
S
,
Wan
H
,
Zhang
Q
,
Yue
R
, et al
.
Essential role of IFT140 in promoting dentinogenesis
.
J Dent Res
.
2018
;
97
(
4
):
423
31
.
56.
Bertero
T
,
Oldham
WM
,
Cottrill
KA
,
Pisano
S
,
Vanderpool
RR
,
Yu
Q
, et al
.
Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension
.
J Clin Investig
.
2016
;
126
(
9
):
3313
35
.
57.
Torrino
S
,
Grasset
EM
,
Audebert
S
,
Belhadj
I
,
Lacoux
C
,
Haynes
M
, et al
.
Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis
.
Cell Metab
.
2021
;
33
(
7
):
1342
57.e10
.
You do not currently have access to this content.