Introduction: Prolonged space flights negatively affect the skeleton. Stromal cells of mesenchymal origin play a crucial role in maintaining homeostasis and in regulating the physiological remodeling of various tissues, and this has particular significance for bone. Methods: Hindlimb unloading (HU) of rats as a ground-based model for simulation of microgravity was implemented. The functional activity of skeletal stem and progenitor cells (SSPCs) from rat femoral bones was assessed in vitro after 2 weeks of HU and after 2 weeks of subsequent recovery of load support (HU + reloading [HU + R]). To characterize the growth of the SSPCs, the number of population doublings (PDs) was calculated. Histochemical detection of the activity of alkaline phosphatase (AP) – an early marker of osteo-differentiation – on day 7, and of extracellular matrix (ECM) mineralization – as a sign of late osteo-differentiation – on day 21, were carried out. Quantitative real-time PCR was performed to detect the expression of the genes encoding proteins associated with the functional activity of osteoprogenitor cells (Pparg, Runx2, Alpl, Cxcl12) and bone tissue homeostasis (Mmp9, Spp1, RANKL, OPG, Ibsp, BMP10, Sost). Results: After HU, a twofold decrease in the PD of the SSPCs, a decrease in AP activity and a significant attenuation of ECM mineralization were detected. There was also significant downregulation of the genes encoding proteins related to bone tissue homeostasis: those for bone matrix proteins (RANKL, OPG, Ibsp), and of the master-genes controlling osteo- and adipo-differentiation (Runx2, Alpl, Pparg), as well as of Mmp9, encoding a regulatory molecule of bone matrix remodeling. By contrast, sclerostin (Sost) was upregulated. After HU + R, the PD, as well as AP activity and the level of ECM mineralization were restored. Conclusion: HU leads to inhibition of the osteoplastic function of SSPCs. The presented data are significant for the elucidation of microgravity-induced mechanisms of bone impairment and for the development of countermeasures for astronauts as well as for osteo-deficient patients after prolonged immobilization.

1.
Rambaut
PC
,
Johnston
RS
.
Prolonged weightlessness and calcium loss in man
.
Acta Astronaut
.
1979
;
6
(
9
):
1113
22
.
2.
Tilton
FE
,
Degioanni
JJ
,
Schneider
VS
.
Long-term follow-up of Skylab bone demineralization
.
Aviat Space Environ Med
.
1980
;
51
(
11
):
1209
13
.
3.
Whedon
GD
,
Lutwak
L
,
Rambaut
P
,
Whittle
M
,
Leach
C
,
Reid
J
, et al
.
Effect of weightlessness on mineral metabolism; metabolic studies on Skylab orbital space flights
.
Calcif Tissue Res
.
1975
;
21
(
1
):
423
30
.
4.
Man
J
,
Graham
T
,
Squires-Donelly
G
,
Laslett
AL
.
The effects of microgravity on bone structure and function
.
NPJ Microgravity
.
2022
;
8
(
1
):
9
.
5.
Blaber
EA
,
Dvorochkin
N
,
Lee
C
,
Alwood
JS
,
Yousuf
R
,
Pianetta
P
, et al
.
Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21
.
PLoS One
.
2013
;
8
(
4
):
e61372
.
6.
Gerbaix
M
,
Gnyubkin
V
,
Farlay
D
,
Olivier
C
,
Ammann
P
,
Courbon
G
, et al
.
One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons
.
Sci Rep
.
2017
;
7
(
1
):
2659
.
7.
Maupin
KA
,
Childress
P
,
Brinker
A
,
Khan
F
,
Abeysekera
I
,
Aguilar
IN
, et al
.
Skeletal adaptations in young male mice after 4 weeks aboard the International Space Station
.
NPJ Microgravity
;
2019
. Vol.
5
; p.
21
.
8.
Vico
L
,
Chappard
D
,
Palle
S
,
Bakulin
AV
,
Novikov
VE
,
Alexandre
C
.
Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667)
.
Am J Physiol
.
1988
;
255
(
2 Pt 2
):
R243
47
.
9.
Fu
J
,
Goldsmith
M
,
Crooks
SD
,
Condon
SF
,
Morris
M
,
Komarova
SV
.
Bone health in spacefaring rodents and primates: systematic review and meta-analysis
.
NPJ Microgravity
.
2021
;
7
(
1
):
19
.
10.
Blaber
E
,
Sato
K
,
Almeida
EAC
.
Stem cell health and tissue regeneration in microgravity
.
Stem Cell Dev
.
2014
;
23
(
Suppl 1
):
73
8
.
11.
Blaber
EA
,
Dvorochkin
N
,
Torres
ML
,
Yousuf
R
,
Burns
BP
,
Globus
RK
, et al
.
Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration
.
Stem Cell Res
.
2014
;
13
(
2
):
181
201
.
12.
Carmeliet
G
,
Nys
G
,
Bouillon
R
.
Microgravity reduces the differentiation of human osteoblastic MG-63 cells
.
J Bone Miner Res
.
1997
;
12
(
5
):
786
94
.
13.
Hughes-Fulford
M
,
Lewis
ML
.
Effects of microgravity on osteoblast growth activation
.
Exp Cell Res
.
1996
;
224
(
1
):
103
9
.
14.
Landis
WJD
,
Hodgens
KJ
,
Block
D
,
Toma
CD
,
Gerstenfeld
LC
.
Spaceflight effects on cultured embryonic chick bone cells
.
J Bone Miner Res
.
2000
;
15
(
6
):
1099
112
.
15.
Nabavi
N
,
Khandani
A
,
Camirand
A
,
Harrison
RE
.
Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion
.
Bone
.
2011
;
49
(
5
):
965
74
.
16.
Globus
RK
,
Morey-Holton
E
.
Hindlimb unloading: rodent analog for microgravity
.
J Appl Physiol
.
2016
;
120
(
10
):
1196
206
.
17.
Aguirre
JI
,
Plotkin
LI
,
Stewart
SA
,
Weinstein
RS
,
Parfitt
AM
,
Manolagas
SC
, et al
.
Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss
.
J Bone Miner Res
.
2006
;
21
(
4
):
605
15
.
18.
Basso
N
,
Heersche
JNM
.
Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes
.
Bone
.
2006
;
39
(
4
):
807
14
.
19.
Colaianni
G
,
Mongelli
T
,
Cuscito
C
,
Pignataro
P
,
Lippo
L
,
Spiro
G
, et al
.
Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice
.
Sci Rep
.
2017
;
7
(
1
):
2811
.
20.
He
B
,
Yin
X
,
Hao
D
,
Zhang
X
,
Zhang
Z
,
Zhang
K
, et al
.
Blockade of IL-6 alleviates bone loss induced by modeled microgravity in mice
.
Can J Physiol Pharmacol
.
2020
;
98
(
10
):
678
83
.
21.
Lin
C
,
Jiang
X
,
Dai
Z
,
Guo
X
,
Weng
T
,
Wang
J
, et al
.
Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling
.
J Bone Miner Res
.
2009
;
24
(
10
):
1651
61
.
22.
Yang
M
,
Zhang
K
,
Zhang
X
,
Zhang
Z
,
Yin
X
,
He
G
, et al
.
Treatment with hydrogen sulfide donor attenuates bone loss induced by modeled microgravity
.
Can J Physiol Pharmacol
.
2019
;
97
(
7
):
655
60
.
23.
Basso
N
,
Jia
Y
,
Bellows
CG
,
Heersche
JNM
.
The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats
.
Bone
.
2005
;
37
(
3
):
370
8
.
24.
von Kroge
S
,
Wölfel
EM
,
Buravkova
LB
,
Atiakshin
DA
,
Markina
EA
,
Schinke
T
, et al
.
Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics
.
Eur Cel Mater
.
2021
;
42
:
220
31
.
25.
Pan
Z
,
Yang
J
,
Guo
C
,
Shi
D
,
Shen
D
,
Zheng
Q
, et al
.
Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats
.
Stem Cell Dev
.
2008
;
17
(
4
):
795
804
.
26.
Mizoguchi
T
,
Ono
N
.
The diverse origin of bone-forming osteoblasts
.
J Bone Miner Res
.
2021
;
36
(
8
):
1432
47
.
27.
Stains
JP
,
Civitelli
R
.
Gap junctions in skeletal development and function
.
Biochim Biophys Acta
.
2005
;
1719
(
1–2
):
69
81
.
28.
Braveboy-Wagner
J
,
Lelkes
PI
.
Impairment of 7F2 osteoblast function by simulated partial gravity in a Random Positioning Machine
.
npj Microgravity
.
2022
;
8
(
1
):
20
.
29.
Morey-Holton
E
,
Globus
RK
,
Kaplansky
A
,
Durnova
G
.
The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data
. In:
Advances in space biology and medicine [internet]
.
Elsevier
;
2005
; p.
7
40
. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1569257405100021
30.
Morey-Holton
ER
,
Globus
RK
.
Hindlimb unloading rodent model: technical aspects
.
J Appl Physiol
.
2002
;
92
(
4
):
1367
77
.
31.
Barantseva
MY
,
Ozerov
DS
,
Dadasheva
OA
.
Effect of tail-suspension on levels of pro- andanti-inflammatory cytokins and morphological changes in rat’s pulmonary tissues
.
AEM
.
2021
;
55
(
6
):
56
60
.
32.
Meirelles
LS
,
Nardi
NB
.
Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization
.
Br J Haematol
.
2003
;
123
(
4
):
702
11
.
33.
Greenwood
SK
,
Hill
RB
,
Sun
JT
,
Armstrong
MJ
,
Johnson
TE
,
Gara
JP
, et al
.
Population doubling: a simple and more accurate estimation of cell growth suppression in the in vitro assay for chromosomal aberrations that reduces irrelevant positive results
.
Environ Mol Mutagen
.
2004
;
43
(
1
):
36
44
.
34.
Wolfrom
C
,
Raynaud
N
,
Maigne
J
,
Papathanassiou
S
,
Conti
M
,
Kadhom
N
, et al
.
Periodic fluctuations in proliferation of SV-40 transformed human skin fibroblast lines with prolonged lifespan
.
Cell Biol Toxicol
.
1994
;
10
(
4
):
247
54
.
35.
Pizzute
T
,
Li
J
,
Zhang
Y
,
Davis
ME
,
Pei
M
.
Fibroblast growth factor ligand dependent proliferation and chondrogenic differentiation of synovium-derived stem cells and concomitant adaptation of wnt/mitogen-activated protein kinase signals
.
Tissue Eng A
.
2016
;
22
(
15–16
):
1036
46
.
36.
Patntirapong
S
,
Chanruangvanit
C
,
Lavanrattanakul
K
,
Satravaha
Y
.
Assessment of bisphosphonate treated-osteoblast behaviors by conventional assays and a simple digital image analysis
.
Acta Histochem
.
2021
;
123
(
1
):
151659
.
37.
Markina
E
,
Andreeva
E
,
Buravkova
L
.
Stromal lineage precursors from rodent femur and tibia bone marrows after hindlimb unloading: functional ex vivo analysis
.
Int J Mol Sci
.
2023
;
24
(
10
):
8594
.
38.
Bianco
P
.
Stem cells and bone: a historical perspective
.
Bone
.
2015
;
70
:
2
9
.
39.
Bianco
P
,
Robey
PG
,
Simmons
PJ
.
Mesenchymal stem cells: revisiting history, concepts, and assays
.
Cell Stem Cell
.
2008
;
2
(
4
):
313
9
.
40.
Pittenger
MF
,
Mackay
AM
,
Beck
SC
,
Jaiswal
RK
,
Douglas
R
,
Mosca
JD
, et al
.
Multilineage potential of adult human mesenchymal stem cells
.
Science
.
1999
;
284
(
5411
):
143
7
.
41.
Markina
E
,
Andreeva
E
,
Andrianova
I
,
Sotnezova
E
,
Buravkova
L
.
Stromal and hematopoietic progenitors from C57/BI/6N murine bone marrow after 30-day “BION-M1” spaceflight
.
Stem Cell Dev
.
2018
;
27
(
18
):
1268
77
.
42.
Markina
EA
,
Kokhan
VS
,
Roe
MP
,
Andrianova
IV
,
Shtemberg
AS
,
Buravkova
LB
.
The effects of radiation and hindlimb unloading on rat bone marrow progenitor cells
.
Cell Tiss Biol
.
2018
;
12
(
3
):
183
96
.
43.
Ulbrich
C
,
Wehland
M
,
Pietsch
J
,
Aleshcheva
G
,
Wise
P
,
Van Loon
J
, et al
.
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells
.
BioMed Res Int
.
2014
;
2014
:
1
15
.
44.
Zerath
E
,
Holy
X
,
Noël
B
,
Malouvier
A
,
Hott
M
,
Marie
PJ
.
Effects of BMP-2 on osteoblastic cells and on skeletal growth and bone formation in unloaded rats
.
Growth Horm IGF Res
.
1998
;
8
(
2
):
141
9
.
45.
Juhl
OJ
,
Buettmann
EG
,
Friedman
MA
,
DeNapoli
RC
,
Hoppock
GA
,
Donahue
HJ
.
Update on the effects of microgravity on the musculoskeletal system
.
npj Microgravity
.
2021
;
7
(
1
):
28
.
46.
Avitabile
E
,
Fusco
L
,
Minardi
S
,
Orecchioni
M
,
Zavan
B
,
Yilmazer
A
, et al
.
Bioinspired scaffold action under the extreme physiological conditions of simulated space flights: osteogenesis enhancing under microgravity
.
Front Bioeng Biotechnol
.
2020
;
8
:
722
.
47.
Zhang
X
,
Zhang
S
,
Wang
T
.
How the mechanical microenvironment of stem cell growth affects their differentiation: a review
.
Stem Cel Res Ther
.
2022
;
13
(
1
):
415
.
48.
Qian
X
,
Zhang
C
,
Chen
G
,
Tang
Z
,
Liu
Q
,
Chen
J
, et al
.
Effects of BMP-2 and FGF2 on the osteogenesis of bone marrow-derived mesenchymal stem cells in hindlimb-unloaded rats
.
Cell Biochem Biophys
.
2014
;
70
(
2
):
1127
36
.
49.
Meyers
VE
,
Zayzafoon
M
,
Gonda
SR
,
Gathings
WE
,
McDonald
JM
.
Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells
.
J Cel Biochem
.
2004
;
93
(
4
):
697
707
.
50.
Sipp
D
,
Robey
PG
,
Turner
L
.
Clear up this stem-cell mess
.
Nature
.
2018
;
561
(
7724
):
455
7
.
51.
Mizuhashi
K
,
Ono
W
,
Matsushita
Y
,
Sakagami
N
,
Takahashi
A
,
Saunders
TL
, et al
.
Resting zone of the growth plate houses a unique class of skeletal stem cells
.
Nature
.
2018
;
563
(
7730
):
254
8
.
52.
Maes
C
,
Kobayashi
T
,
Selig
MK
,
Torrekens
S
,
Roth
SI
,
Mackem
S
, et al
.
Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
.
Dev Cell
.
2010
;
19
(
2
):
329
44
.
53.
Duchamp De Lageneste
O
,
Julien
A
,
Abou-Khalil
R
,
Frangi
G
,
Carvalho
C
,
Cagnard
N
, et al
.
Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin
.
Nat Commun
.
2018
;
9
(
1
):
773
.
54.
Debnath
S
,
Yallowitz
AR
,
McCormick
J
,
Lalani
S
,
Zhang
T
,
Xu
R
, et al
.
Discovery of a periosteal stem cell mediating intramembranous bone formation
.
Nature
.
2018
;
562
(
7725
):
133
9
.
55.
Matic
I
,
Matthews
BG
,
Wang
X
,
Dyment
NA
,
Worthley
DL
,
Rowe
DW
, et al
.
Quiescent bone lining cells are a major source of osteoblasts during adulthood
.
Stem Cell
.
2016
;
34
(
12
):
2930
42
.
56.
Stein
GS
,
Lian
JB
,
Stein
JL
,
Van Wijnen
AJ
,
Montecino
M
.
Transcriptional control of osteoblast growth and differentiation
.
Physiol Rev
.
1996
;
76
(
2
):
593
629
.
57.
Zhu
S
,
Chen
W
,
Masson
A
,
Li
Y-P
.
Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis
.
Cell Discov
.
2024
;
10
(
1
):
71
.
58.
Sinha
KM
,
Zhou
X
.
Genetic and molecular control of osterix in skeletal formation
.
J Cel Biochem
.
2013
;
114
(
5
):
975
84
.
59.
Huang
W
,
Yang
S
,
Shao
J
,
Li
YP
.
Signaling and transcriptional regulation in osteoblast commitment and differentiation
.
Front Biosci
.
2007
;
12
:
3068
92
.
60.
Chatziravdeli
V
,
Katsaras
GN
,
Lambrou
GI
.
Gene expression in osteoblasts and osteoclasts under microgravity conditions: a systematic review
.
CG
.
2019
;
20
(
3
):
184
98
.
61.
Bruderer
M
,
Richards
R
,
Alini
M
,
Stoddart
M
.
Role and regulation of RUNX2 in osteogenesis
.
eCM
.
2014
;
28
:
269
86
.
62.
Amarasekara
DS
,
Kim
S
,
Rho
J
.
Regulation of osteoblast differentiation by cytokine networks
.
IJMS
.
2021
;
22
(
6
):
2851
.
63.
Kim
J
,
Kim
M
,
Jung
H
,
Sohn
Y
.
Leonurus sibiricus
L
.
Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation
.
Int J Mol Med
.
2019
;
44
(
3
):
913
26
. Available from: http://www.spandidos-publications.com/10.3892/ijmm.2019.4269
64.
Yu
L
,
Cecil
J
,
Peng
S-B
,
Schrementi
J
,
Kovacevic
S
,
Paul
D
, et al
.
Identification and expression of novel isoforms of human stromal cell-derived factor 1
.
Gene
.
2006
;
374
:
174
9
.
65.
Liu
C
,
Weng
Y
,
Yuan
T
,
Zhang
H
,
Bai
H
,
Li
B
, et al
.
CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells
.
Int J Med Sci
.
2013
;
10
(
9
):
1181
92
.
66.
Duan
P
,
Bonewald
LF
.
The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth
.
Int J Biochem Cel Biol
.
2016
;
77
(
Pt A
):
23
9
.
67.
Lee
J
,
Youn
BU
,
Kim
K
,
Kim
JH
,
Lee
D-H
,
Seong
S
, et al
.
Mst2 controls bone homeostasis by regulating osteoclast and osteoblast differentiation
.
J Bone Miner Res
.
2015
;
30
(
9
):
1597
607
.
68.
Tyrina
E
,
Yakubets
D
,
Markina
E
,
Buravkova
L
.
Hippo signaling pathway involvement in osteopotential regulation of murine bone marrow cells under simulated microgravity
.
Cells
.
2024
;
13
(
22
):
1921
.
69.
Ignatenko
GA
,
Nemsadze
IG
,
Mirovich
ED
,
Churilov
AV
,
Maylyan
EA
,
Glazkov
IS
, et al
.
The role of cytokines in bone remodeling and the pathogenesis of postmenopausal osteoporosis
.
Med Vestn Uga Ross
.
2020
;
11
(
2
):
6
18
.
70.
Tobeiha
M
,
Moghadasian
MH
,
Amin
N
,
Jafarnejad
S
.
RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling
. In:
Deligianni
D
, editor
BioMed Research International
;
2020
. Vol.
2020
.
71.
Boyce
BF
,
Xing
L
.
The RANKL/RANK/OPG pathway
.
Curr Osteoporos Rep
.
2007
;
5
(
3
):
98
104
.
72.
Silva
I
,
Branco
JC
.
Rank/Rankl/opg: literature review
.
Acta Reumatol Port
.
2011
;
36
(
3
):
209
18
.
73.
Baron
R
,
Rawadi
G
.
Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton
.
Endocrinology
.
2007
;
148
(
6
):
2635
43
.
74.
Veverka
V
,
Henry
AJ
,
Slocombe
PM
,
Ventom
A
,
Mulloy
B
,
Muskett
FW
, et al
.
Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation
.
J Biol Chem
.
2009
;
284
(
16
):
10890
900
.
75.
Poole
KES
,
van Bezooijen
RL
,
Loveridge
N
,
Hamersma
H
,
Papapoulos
SE
,
Löwik
CW
, et al
.
Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation
.
FASEB J
.
2005
;
19
(
13
):
1842
4
.
76.
Icer
MA
,
Gezmen-Karadag
M
.
The multiple functions and mechanisms of osteopontin
.
Clin Biochem
.
2018
;
59
:
17
24
.
77.
Almeida
E
,
Cahill
R
.
37-Day microgravity exposure in 16-Week female C57BL/6J mice during the NASA Rodent Research 1 mission is associated with bone loss specific to weight-bearing skeletal sites (femur and vertebrae, micro computed tomography) [Internet]
.
NASA GeneLab
;
2025
. Available from: https://osdr.nasa.gov/bio/repo/data/studies/OSD-804
78.
Sanders
L
,
Almeida
E
,
Costes
S
,
Gebre
S
,
Dinh
M
,
Boyko
V
, et al
.
Transcriptional profiling of colon from mice flown on the RR-10 mission [Internet]
.
NASA GeneLab
;
2023
. [cited 2025 Feb 13]. Available from: https://osdr.nasa.gov/bio/repo/data/studies/OSD-667
You do not currently have access to this content.