Background: Paper-based microfluidics have gained significant attention as cost-effective and biocompatible platforms for various biological and medical applications. These devices facilitate the replication of complex tissue environments and offer a versatile alternative to traditional microfluidic systems. Summary: This review highlights recent advances in paper-based microfluidics for tissue engineering and regenerative medicine. Key applications include 3D cell culture, bioanalysis assays, and high-throughput screening systems. Innovations in fabrication methods, such as wax printing and inkjet printing, have enhanced the functionality and scalability of these devices. Furthermore, the integration of biomaterials and surface modification techniques has improved their utility in replicating physiological conditions and studying cellular behaviors. Challenges such as mechanical robustness, imaging compatibility, and immune antigenicity are also addressed, alongside potential solutions and future directions. Key Messages: Paper-based microfluidic systems provide a transformative platform for tissue engineering and regenerative medicine, offering simplicity, affordability, and functional versatility. With ongoing innovations, these devices are poised to bridge the gap between laboratory research and clinical applications, supporting advancements in personalized medicine, regenerative therapies, and disease modeling.

Paper is made of cellulose fibers, inside which capillary microchannels and networks are formed between fibers. Paper-based microfluidics uses paper as a cost-effective and versatile material to create small-scale channels for control of fluid movement. These systems work without complex machinery and provide unique benefits, such as affordability, easy manufacturing, and biocompatibility. In tissue engineering and regenerative medicine, paper-based microfluidics helps create 3D environments that mimic the natural conditions of living tissues. These environments support advanced studies, such as investigating how cells grow, respond to drugs, and interact with their surroundings. This review highlights key advancements in designing and building paper-based microfluidic devices, including new methods to improve their precision and adaptability. For example, the use of multiple layers of paper creates 3D systems for replicating complex tissue conditions. We believe that paper-based microfluidics has the potential to advance human healthcare by making high-quality tissue models that are highly accessible for drug testing, disease studies, and personalized therapies.

1.
Martinez
AW
,
Phillips
ST
,
Butte
MJ
,
Whitesides
GM
.
Patterned paper as a platform for inexpensive, low-volume, portable bioassays
.
Angew Chem Int Ed Engl
.
2007
;
46
(
8
):
1318
20
.
2.
Cai
L
,
Xu
C
,
Lin
S
,
Luo
J
,
Wu
M
,
Yang
F
.
A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask
.
Biomicrofluidics
.
2014
;
8
(
5
):
056504
.
3.
Li
M
,
Wang
Y
,
Zhang
Y
,
Yu
J
,
Ge
S
,
Yan
M
.
Graphene functionalized porous Au-paper based electrochemiluminescence device for detection of DNA using luminescent silver nanoparticles coated calcium carbonate/carboxymethyl chitosan hybrid microspheres as labels
.
Biosens Bioelectron
.
2014
;
59
:
307
13
.
4.
Koo
CK
,
He
F
,
Nugen
SR
.
An inkjet-printed electrowetting valve for paper-fluidic sensors
.
Analyst
.
2013
;
138
(
17
):
4998
5004
.
5.
Rajendra
V
,
Sicard
C
,
Brennan
JD
,
Brook
MA
.
Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers
.
Analyst
.
2014
;
139
(
24
):
6361
5
.
6.
He
Y
,
Wu
Y
,
Xiao
X
,
Fu
J
,
Xue
G
.
A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography
.
RSC Adv
.
2014
;
4
(
109
):
63860
5
.
7.
OuYang
L
,
Wang
C
,
Du
F
,
Zheng
T
,
Liang
H
.
Electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography
.
RSC Adv
.
2014
;
4
(
3
):
1093
101
.
8.
Sameenoi
Y
,
Nongkai
PN
,
Nouanthavong
S
,
Henry
CS
,
Nacapricha
D
.
One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication
.
Analyst
.
2014
;
139
(
24
):
6580
8
.
9.
Yafia
M
,
Shukla
S
,
Najjaran
H
.
Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing
.
J Micromech Microeng
.
2015
;
25
(
5
):
057001
.
10.
Lisowski
P
,
Zarzycki
PK
.
Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development, applications and future trends
.
Chromatographia
.
2013
;
76
(
19
):
1201
14
.
11.
Nishat
S
,
Jafry
AT
,
Martinez
AW
,
Awan
FR
.
Paper-based microfluidics: simplified fabrication and assay methods
.
Sensor Actuator B Chem
.
2021
;
336
:
129681
.
12.
Ghaderinezhad
F
,
Amin
R
,
Temirel
M
,
Yenilmez
B
,
Wentworth
A
,
Tasoglu
S
.
High-throughput rapid-prototyping of low-cost paper-based microfluidics
.
Sci Rep
.
2017
;
7
(
1
):
3553
.
13.
Kumawat
N
,
Soman
SS
,
Vijayavenkataraman
S
,
Kumar
S
.
Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process
.
Lab Chip
.
2022
;
22
(
18
):
3377
89
.
14.
Li
X
,
Ballerini
DR
,
Shen
W
.
A perspective on paper-based microfluidics: current status and future trends
.
Biomicrofluidics
.
2012
;
6
(
1
):
11301
1130113
.
15.
Malik
S
,
Singh
J
,
Saini
K
,
Chaudhary
V
,
Umar
A
,
Ibrahim
A
, et al
.
Paper-based sensors: affordable, versatile, and emerging analyte detection platforms
.
Anal Methods
.
2024
;
16
(
18
):
2777
809
.
16.
Cramer
SM
,
Larson
TS
,
Lockett
MR
.
Tissue Papers: leveraging paper-based microfluidics for the next generation of 3D tissue models
:
ACS Publications
;
2019
.
17.
Karimi
M
,
Bahrami
S
,
Mirshekari
H
,
Basri
SM
,
Nik
AB
,
Aref
AR
, et al
.
Microfluidic systems for stem cell-based neural tissue engineering
.
Lab Chip
.
2016
;
16
(
14
):
2551
71
.
18.
Dokmeci
MR
,
Khademhosseini
A
.
Preface to Special Topic: microfluidics in cell biology and tissue engineering
.
Biomicrofluidics
.
2011
;
5
(
2
):
22101
.
19.
Lantigua
D
,
Kelly
YN
,
Unal
B
,
Camci-Unal
G
.
Engineered paper-based cell culture platforms
.
Adv Healthc Mater
.
2017
;
6
(
22
).
20.
Mao
K
,
Min
X
,
Zhang
H
,
Zhang
K
,
Cao
H
,
Guo
Y
, et al
.
Paper-based microfluidics for rapid diagnostics and drug delivery
.
J Control Release
.
2020
;
322
:
187
99
.
21.
Lei
KF
,
Huang
CH
,
Tsang
NM
.
Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber
.
Talanta
.
2016
;
147
:
628
33
.
22.
Rodriguez
NM
,
Wong
WS
,
Liu
L
,
Dewar
R
,
Klapperich
CM
.
A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples
.
Lab Chip
.
2016
;
16
(
4
):
753
63
.
23.
Ayuso
JM
,
Virumbrales-Muñoz
M
,
Lang
JM
,
Beebe
DJ
.
A role for microfluidic systems in precision medicine
.
Nat Commun
.
2022
;
13
(
1
):
3086
.
24.
Filippi
M
,
Buchner
T
,
Yasa
O
,
Weirich
S
,
Katzschmann
RK
.
Microfluidic tissue engineering and bio-actuation
.
Adv Mater
.
2022
;
34
(
23
):
e2108427
.
25.
Zoneff
E
,
Wang
Y
,
Jackson
C
,
Smith
O
,
Duchi
S
,
Onofrillo
C
, et al
.
Controlled oxygen delivery to power tissue regeneration
.
Nat Commun
.
2024
;
15
(
1
):
4361
.
26.
Rademakers
T
,
Horvath
JM
,
van Blitterswijk
CA
,
LaPointe
VLS
.
Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization
.
J Tissue Eng Regen Med
.
2019
;
13
(
10
):
1815
29
.
27.
White
MJ
,
Singh
T
,
Wang
E
,
Smith
Q
,
Kutys
ML
.
Chip’-ing away at morphogenesis–application of organ-on-chip technologies to study tissue morphogenesis
.
J Cell Sci
.
2023
;
136
(
19
):
jcs261130
.
28.
Lin
JY
,
Lo
KY
,
Sun
YS
.
A microfluidics-based wound-healing assay for studying the effects of shear stresses, wound widths, and chemicals on the wound-healing process
.
Sci Rep
.
2019
;
9
(
1
):
20016
.
29.
Hoyo
J
,
Bassegoda
A
,
Ferreres
G
,
Hinojosa-Caballero
D
,
Gutiérrez-Capitán
M
,
Baldi
A
, et al
.
Rapid colorimetric detection of wound infection with a fluidic paper device
.
Int J Mol Sci
.
2022
;
23
(
16
):
9129
.
30.
Kang
W
,
Giraldo-Vela
JP
,
Nathamgari
SS
,
McGuire
T
,
McNaughton
RL
,
Kessler
JA
, et al
.
Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons
.
Lab Chip
.
2014
;
14
(
23
):
4486
95
.
31.
Zhang
J
,
Wei
X
,
Zeng
R
,
Xu
F
,
Li
X
.
Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip
.
Future Sci OA
.
2017
;
3
(
2
):
FSO187
.
32.
Cate
DM
,
Adkins
JA
,
Mettakoonpitak
J
,
Henry
CS
.
Recent developments in paper-based microfluidic devices
.
Anal Chem
.
2015
;
87
(
1
):
19
41
.
33.
Deliorman
M
,
Ali
DS
,
Qasaimeh
MA
.
Next-generation microfluidics for biomedical research and healthcare applications
.
Biomed Eng Comput Biol
.
2023
;
14
:
11795972231214387
.
34.
Hao
Z
,
Chen
H
,
Shi
X
,
Tan
W
,
Zhu
G
.
Fabrication for paper-based microfluidic analytical devices and saliva analysis application
.
Microfluid Nanofluidics
.
2021
;
25
(
10
):
80
.
35.
Byrnes
S
,
Thiessen
G
,
Fu
E
.
Progress in the development of paper-based diagnostics for low-resource point-of-care settings
.
Bioanalysis
.
2013
;
5
(
22
):
2821
36
.
36.
Yetisen
AK
,
Akram
MS
,
Lowe
CR
.
Paper-based microfluidic point-of-care diagnostic devices
.
Lab Chip
.
2013
;
13
(
12
):
2210
51
.
37.
Liu
J
,
Kong
X
,
Wang
H
,
Zhang
Y
,
Fan
Y
.
Roll-to-roll wax transfer for rapid and batch fabrication of paper-based microfluidics
.
Microfluid Nanofluidics
.
2019
;
24
(
1
):
6
.
38.
Tesfaye
T
,
Hussen
A
.
Microfluidic paper-based analytical device (µPAD) fabricated by wax screen printing technique for the determination of nitrite and nitrate ion in water samples
.
Microfluid Nanofluidics
.
2022
;
26
(
3
):
22
.
39.
Le
NN
,
Dinh
DMT
,
Lam
PH
,
Le
AVT
,
Le
MT
,
Pham
MD
, et al
.
Fabrication of microfluidic paper-based channels by inkjet printing process for analytical applications
.
Adv Nat Sci Nanosci Nanotechnol
.
2023
;
14
(
1
):
015015
.
40.
Deng
Y
,
Li
Q
,
Zhou
Y
,
Qian
J
.
Fully inkjet printing preparation of a carbon dots multichannel microfluidic paper-based sensor and its application in food additive detection
.
ACS Appl Mater Inter
.
2021
;
13
(
48
):
57084
91
.
41.
Tijero
M
,
Díez-Ahedo
R
,
Benito-Lopez
F
,
Basabe-Desmonts
L
,
Castro-López
V
,
Valero
A
.
Biomolecule storage on non-modified thermoplastic microfluidic chip by ink-jet printing of ionogels
.
Biomicrofluidics
.
2015
;
9
(
4
):
044124
.
42.
Olkkonen
J
,
Lehtinen
K
,
Erho
T
.
Flexographically printed fluidic structures in paper
.
Anal Chem
.
2010
;
82
(
24
):
10246
50
.
43.
Assaifan
AK
,
Al Habis
N
,
Ahmad
I
,
Alshehri
NA
,
Alharbi
HF
.
Scaling-up medical technologies using flexographic printing
.
Talanta
.
2020
;
219
:
121236
.
44.
Renault
C
,
Scida
K
,
Knust
KN
,
Fosdick
SE
,
Crooks
RM
.
Paper-based bipolar electrochemistry
.
J Electrochem Sci Tech
.
2013
;
4
(
4
):
146
52
.
45.
Mettakoonpitak
J
,
Khongsoun
K
,
Wongwan
N
,
Kaewbutdee
S
,
Siripinyanond
A
,
Kuharuk
A
, et al
.
Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices
.
Sensor Actuator B Chem
.
2021
;
331
:
129463
.
46.
Burgos-Flórez
F
,
Rodríguez
A
,
Cervera
E
,
De Ávila
M
,
Sanjuán
M
,
Villalba
PJ
.
Microfluidic paper-based blood plasma separation device as a potential tool for timely detection of protein biomarkers
.
Micromachines
.
2022
;
13
(
5
):
706
.
47.
Raj
N
,
Breedveld
V
,
Hess
DW
.
Flow control in fully enclosed microfluidics paper based analytical devices using plasma processes
.
Sensor Actuator B Chem
.
2020
;
320
:
128606
.
48.
Moulahoum
H
.
Dual chromatic laser-printed microfluidic paper-based analytical device (μPAD) for the detection of atrazine in water
.
ACS Omega
.
2023
;
8
(
44
):
41194
203
.
49.
Pungjunun
K
,
Yakoh
A
,
Chaiyo
S
,
Praphairaksit
N
,
Siangproh
W
,
Kalcher
K
, et al
.
Laser engraved microapillary pump paper-based microfluidic device for colorimetric and electrochemical detection of salivary thiocyanate
.
Mikrochim Acta
.
2021
;
188
(
4
):
140
.
50.
Aghababaie
M
,
Foroushani
ES
,
Changani
Z
,
Gunani
Z
,
Mobarakeh
MS
,
Hadady
H
, et al
.
Recent Advances in the development of enzymatic paper-based microfluidic biosensors
.
Biosens Bioelectron
.
2023
;
226
:
115131
.
51.
Strong
EB
,
Schultz
SA
,
Martinez
AW
,
Martinez
NW
.
Fabrication of miniaturized paper-based microfluidic devices (MicroPADs)
.
Sci Rep
.
2019
;
9
(
1
):
7
.
52.
Tien
J
,
Dance
YW
.
Microfluidic biomaterials
.
Adv Healthc Mater
.
2021
;
10
(
4
):
e2001028
.
53.
Walji
N
,
MacDonald
BD
.
Influence of geometry and surrounding conditions on fluid flow in paper-based devices
.
Micromachines
.
2016
;
7
(
5
):
73
.
54.
Zheng
XT
,
Yang
Z
,
Sutarlie
L
,
Thangaveloo
M
,
Yu
Y
,
Salleh
NABM
, et al
.
Battery-free and AI-enabled multiplexed sensor patches for wound monitoring
.
Sci Adv
.
2023
;
9
(
24
):
eadg6670
.
55.
Wang
Y
,
Nunna
BB
,
Talukder
N
,
Etienne
EE
,
Lee
ES
.
Blood plasma self-separation technologies during the self-driven flow in microfluidic platforms
.
Bioengineering
.
2021
;
8
(
7
):
94
.
56.
Tang
RH
,
Li
M
,
Liu
LN
,
Zhang
SF
,
Alam
N
,
You
M
, et al
.
Chitosan-modified nitrocellulose membrane for paper-based point-of-care testing
.
Cellulose
.
2020
;
27
(
7
):
3835
46
.
57.
Bhardwaj
P
,
Arora
B
,
Saxena
S
,
Singh
S
,
Palkar
P
,
Goda
JS
, et al
.
Paper-based point of care diagnostics for cancer biomarkers
.
Sens Diagn
.
2024
;
3
(
4
):
504
35
.
58.
Parween
S
,
Bhatnagar
I
,
Bhosale
S
,
Paradkar
S
,
Michael
IJ
,
Rao
CM
, et al
.
Cross-linked chitosan biofunctionalized paper-based microfluidic device towards long term stabilization of blood typing antibodies
.
Int J Biol Macromol
.
2020
;
163
:
1233
9
.
59.
Evans
E
,
Gabriel
EF
,
Benavidez
TE
,
Tomazelli Coltro
WK
,
Garcia
CD
.
Modification of microfluidic paper-based devices with silica nanoparticles
.
Analyst
.
2014
;
139
(
21
):
5560
7
.
60.
Durdabak
DB
,
Dogan
S
,
Tekol
SD
,
Celik
C
,
Ozalp
VC
,
Tuna
BG
.
Direct detection of viral infections from swab samples by probe-gated silica nanoparticle-based lateral flow assay
.
ChemistryOpen
.
2024
;
13
(
2
):
e202300120
.
61.
Wen
F
,
Lau
CCS
,
Lim
J
,
Liao
Y
,
Teoh
SH
,
Chong
MSK
.
Surface modification of tissue engineering scaffolds
.
Polymeric biomaterials for tissue regeneration: from surface/interface design to 3D constructs
;
2016
; p.
123
50
.
62.
Roh
S
,
Jang
Y
,
Yoo
J
,
Seong
H
.
Surface modification strategies for biomedical applications: enhancing cell–biomaterial interfaces and biochip performances
.
Biochip J
.
2023
;
17
(
2
):
174
91
.
63.
Cai
L
,
Zhong
M
,
Li
H
,
Xu
C
,
Yuan
B
.
Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions
.
Biomicrofluidics
.
2015
;
9
(
4
):
046503
.
64.
Vaquer
A
,
Barón
E
,
de la Rica
R
.
Dissolvable polymer valves for sweat chrono-sampling in wearable paper-based analytical devices
.
ACS Sens
.
2022
;
7
(
2
):
488
94
.
65.
Li
X
,
Zwanenburg
P
,
Liu
X
.
Magnetic timing valves for fluid control in paper-based microfluidics
.
Lab Chip
.
2013
;
13
(
13
):
2609
14
.
66.
Hu
J
,
Wang
S
,
Wang
L
,
Li
F
,
Pingguan-Murphy
B
,
Lu
TJ
, et al
.
Advances in paper-based point-of-care diagnostics
.
Biosens Bioelectron
.
2014
;
54
:
585
97
.
67.
de Oliveira
RAG
,
Camargo
F
,
Pesquero
NC
,
Faria
RC
.
A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis
.
Anal Chim Acta
.
2017
;
957
:
40
6
.
68.
Nguyen
MP
,
Kelly
SP
,
Wydallis
JB
,
Henry
CS
.
Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices
.
Anal Chim Acta
.
2020
;
1100
:
156
62
.
69.
Srisa-Art
M
,
Boehle
KE
,
Geiss
BJ
,
Henry
CS
.
Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation
.
Anal Chem
.
2018
;
90
(
1
):
1035
43
.
70.
de Tarso Garcia
P
,
Garcia Cardoso
TM
,
Garcia
CD
,
Carrilho
E
,
Tomazelli Coltro
WK
.
A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays
.
RSC Adv
.
2014
;
4
(
71
):
37637
44
.
71.
Gabriel
EFM
,
Garcia
PT
,
Lopes
FM
,
Coltro
WKT
.
Paper-based colorimetric biosensor for tear glucose measurements
.
Micromachines
.
2017
;
8
(
4
):
104
.
72.
Gabriel
EF
,
Garcia
PT
,
Cardoso
TM
,
Lopes
FM
,
Martins
FT
,
Coltro
WK
.
Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices
.
Analyst
.
2016
;
141
(
15
):
4749
56
.
73.
Han
KN
,
Choi
JS
,
Kwon
J
.
Three-dimensional paper-based slip device for one-step point-of-care testing
.
Sci Rep
.
2016
;
6
:
25710
.
74.
Derda
R
,
Laromaine
A
,
Mammoto
A
,
Tang
SK
,
Mammoto
T
,
Ingber
DE
, et al
.
Paper-supported 3D cell culture for tissue-based bioassays
.
P Natl Acad Sci USA
.
2009
;
106
(
44
):
18457
62
.
75.
Rijal
G
,
Li
W
.
A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening
.
Sci Adv
.
2017
;
3
(
9
):
e1700764
.
76.
Wang
Y
,
Su
W
,
Wang
L
,
Jiang
L
,
Liu
Y
,
Hui
L
, et al
.
Paper supported long-term 3D liver co-culture model for the assessment of hepatotoxic drugs
.
Toxicol Res
.
2018
;
7
(
1
):
13
21
.
77.
Li
J
,
Mooney
DJ
.
Designing hydrogels for controlled drug delivery
.
Nat Rev Mater
.
2016
;
1
(
12
):
16071
17
.
78.
Fratzl
M
,
Chang
BS
,
Oyola-Reynoso
S
,
Blaire
G
,
Delshadi
S
,
Devillers
T
, et al
.
Magnetic two-way valves for paper-based capillary-driven microfluidic devices
.
ACS Omega
.
2018
;
3
(
2
):
2049
57
.
79.
Fu
H
,
Song
P
,
Wu
Q
,
Zhao
C
,
Pan
P
,
Li
X
, et al
.
A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays
.
Microsyst Nanoeng
.
2019
;
5
:
50
.
80.
Toda
H
,
Iwasaki
W
,
Morita
N
,
Motomura
T
,
Takemura
K
,
Nagano
M
, et al
.
Reversible thermo-responsive valve for microfluidic paper-based analytical devices
.
Micromachines
.
2022
;
13
(
5
):
690
.
81.
Tehranirokh
M
,
Kouzani
AZ
,
Francis
PS
,
Kanwar
JR
.
Microfluidic devices for cell cultivation and proliferation
.
Biomicrofluidics
.
2013
;
7
(
5
):
51502
.
82.
Weng
X
,
Neethirajan
S
.
Paper-based microfluidic aptasensor for food safety
.
J Food Saf
.
2017
;
38
(
1
).
83.
Alahmad
W
,
Varanusupakul
P
,
Varanusupakul
P
.
Recent developments and applications of microfluidic paper-based analytical devices for the detection of biological and chemical hazards in foods: a critical review
.
Crit Rev Anal Chem
.
2023
;
53
(
2
):
233
52
.
84.
Kung
C-T
,
Hou
C-Y
,
Wang
Y-N
,
Fu
L-M
.
Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water
.
Sensor Actuator B Chem
.
2019
;
301
:
126855
.
85.
Fu
SX
,
Zuo
P
,
Ye
BC
.
A novel wick-like paper-based microfluidic device for 3D cell culture and anti-cancer drugs screening
.
Biotechnol J
.
2021
;
16
(
2
):
e2000126
.
86.
Agarwal
T
,
Borrelli
MR
,
Makvandi
P
,
Ashrafizadeh
M
,
Maiti
TK
.
Paper-based cell culture: paving the pathway for liver tissue model development on a cellulose paper chip
.
ACS Appl Bio Mater
.
2020
;
3
(
7
):
3956
74
.
87.
Nilghaz
A
,
Mousavi
SM
,
Li
M
,
Tian
J
,
Cao
R
,
Wang
X
.
Paper-based microfluidics for food safety and quality analysis
.
Trends Food Sci Tech
.
2021
;
118
:
273
84
.
88.
Low
LA
,
Mummery
C
,
Berridge
BR
,
Austin
CP
,
Tagle
DA
.
Organs-on-chips: into the next decade
.
Nat Rev Drug Discov
.
2021
;
20
(
5
):
345
61
.
89.
Caleffi
JT
,
Aal
MCE
,
Gallindo
HOM
,
Caxali
GH
,
Crulhas
BP
,
Ribeiro
AO
, et al
.
Magnetic 3D cell culture: state of the art and current advances
.
Life Sci
.
2021
;
286
:
120028
.
90.
Andersen
T
,
Auk-Emblem
P
,
Dornish
M
.
3D cell culture in alginate hydrogels
.
Microarrays
.
2015
;
4
(
2
):
133
61
.
91.
Mosadegh
B
,
Lockett
MR
,
Minn
KT
,
Simon
KA
,
Gilbert
K
,
Hillier
S
, et al
.
A paper-based invasion assay: assessing chemotaxis of cancer cells in gradients of oxygen
.
Biomaterials
.
2015
;
52
:
262
71
.
92.
Samara
B
,
Deliorman
M
,
Sukumar
P
,
Qasaimeh
MA
.
Cryopreservable arrays of paper-based 3D tumor models for high throughput drug screening
.
Lab Chip
.
2021
;
21
(
5
):
844
54
.
93.
Rjaibi
ST
,
Jacques
E
,
Ni
J
,
Xu
B
,
Kouthouridis
S
,
Sitolle
J
, et al
.
A cryopreservation strategy for myoblast storage in paper-based scaffolds for inter-laboratory studies of skeletal muscle health
.
Adv Mater Inter
.
2024
;
11
(
33
).
94.
Rahimi
R
,
Htwe
SS
,
Ochoa
M
,
Donaldson
A
,
Zieger
M
,
Sood
R
, et al
.
A paper-based in vitro model for on-chip investigation of the human respiratory system
.
Lab Chip
.
2016
;
16
(
22
):
4319
25
.
95.
Cadavid
JL
,
Latour
S
,
Nowlan
F
,
Co
IL
,
Landon-Brace
N
,
Wouters
BG
, et al
.
An engineered paper-based 3D coculture model of pancreatic cancer to study the impact of tissue architecture and microenvironmental gradients on cell phenotype
.
Adv Healthc Mater
.
2023
;
12
(
14
):
2201846
.
96.
Cheng
F
,
Cao
X
,
Li
H
,
Liu
T
,
Xie
X
,
Huang
D
, et al
.
Generation of cost-effective paper-based tissue models through matrix-assisted sacrificial 3D printing
.
Nano Lett
.
2019
;
19
(
6
):
3603
11
.
97.
Cadavid
JL
,
Li
NT
,
McGuigan
AP
.
Bridging systems biology and tissue engineering: unleashing the full potential of complex 3D in vitro tissue models of disease
.
Biophys Rev
.
2024
;
5
(
2
):
021301
.
98.
Naskar
S
,
Kumaran
V
,
Basu
B
.
Reprogramming the stem cell behavior by shear stress and electric field stimulation: lab-on-a-chip based biomicrofluidics in regenerative medicine
.
Regen Eng Transl Med
.
2018
;
5
(
2
):
99
127
.
99.
Tong
Y-WL
,
Fong
K
.
Development of paper-based microfluidic platform for analysis of cellular crosstalk and molecular expression
. 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC);
2023
; p.
482
3
.
100.
Bhattacharya
I
,
Ghayor
C
,
Weber
FE
.
The use of adipose tissue-derived progenitors in bone tissue engineering - a review
.
Transfus Med Hemother
.
2016
;
43
(
5
):
336
43
.
101.
Park
HJ
,
Yu
SJ
,
Yang
K
,
Jin
Y
,
Cho
AN
,
Kim
J
, et al
.
Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering
.
Biomaterials
.
2014
;
35
(
37
):
9811
23
.
102.
Patnaik
JL
,
Byers
T
,
DiGuiseppi
C
,
Dabelea
D
,
Denberg
TD
.
Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study
.
Breast Cancer Res
.
2011
;
13
(
3
):
R64
.
103.
Alemdar
N
,
Leijten
J
,
Camci-Unal
G
,
Hjortnaes
J
,
Ribas
J
,
Paul
A
, et al
.
Oxygen-generating photo-cross-linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis
.
ACS Biomater Sci Eng
.
2017
;
3
(
9
):
1964
71
.
104.
Wang
L
,
Xu
C
,
Zhu
Y
,
Yu
Y
,
Sun
N
,
Zhang
X
, et al
.
Human induced pluripotent stem cell-derived beating cardiac tissues on paper
.
Lab Chip
.
2015
;
15
(
22
):
4283
90
.
105.
Lee
JH
,
Gu
Y
,
Wang
H
,
Lee
WY
.
Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials
.
Biomaterials
.
2012
;
33
(
4
):
999
1006
.
106.
Hockney
S
,
Parker
J
,
Turner
JE
,
Todd
X
,
Todryk
S
,
Gieling
RG
, et al
.
Next generation organoid engineering to replace animals in cancer drug testing
.
Biochem Pharmacol
.
2023
;
213
:
115586
.
107.
Hu
C
,
Yang
S
,
Zhang
T
,
Ge
Y
,
Chen
Z
,
Zhang
J
, et al
.
Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages
.
Environ Int
.
2024
;
184
:
108415
.
108.
Ren
J
,
Wang
N
,
Guo
P
,
Fan
Y
,
Lin
F
,
Wu
J
.
Recent advances in microfluidics-based cell migration research
.
Lab Chip
.
2022
;
22
(
18
):
3361
76
.
109.
Musile
G
,
Wang
L
,
Bottoms
J
,
Tagliaro
F
,
McCord
B
.
The development of paper microfluidic devices for presumptive drug detection
.
Anal Methods
.
2015
;
7
(
19
):
8025
33
.
110.
Hong
B
,
Xue
P
,
Wu
Y
,
Bao
J
,
Chuah
YJ
,
Kang
Y
.
A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening
.
Biomed Microdevices
.
2016
;
18
:
21
8
.
111.
Trucillo
P
.
Biomaterials for drug delivery and human applications
.
Materials
.
2024
;
17
(
2
):
456
.
112.
Gong
MM
,
Sinton
D
.
Turning the page: advancing paper-based microfluidics for broad diagnostic application
.
Chem Rev
.
2017
;
117
(
12
):
8447
80
.
113.
Cordt
C
,
Daeg
J
,
Elle
O
,
Geissler
A
,
Biesalski
M
.
Innovative paper coatings: regenerative superhydrophobicity through self-Structuring aqueous wax-polymer dispersions
.
Coatings
.
2024
;
14
(
8
):
1028
.
You do not currently have access to this content.