Background: The trachea, a vital conduit in the lower airway system, can be affected by various disorders, such as tracheal neoplasms and tracheoesophageal fistulas, that often necessitate reconstruction. While short-segment defects can sometimes be addressed with end-to-end anastomosis, larger defects require tracheal reconstruction, a complex procedure with no universally successful replacement strategy. Tissue engineering offers a promising solution for tracheal repair, particularly focusing on regenerating its epithelium, which plays a critical role in protecting the respiratory system and facilitating mucociliary clearance. However, replicating the complex structure and functionality of the tracheal epithelium remains a significant challenge, with key hurdles including proper cell differentiation, functional mucociliary clearance, and addressing the relative lack of vascular supply to the trachea. Summary: Current tissue engineering approaches, including biomaterial scaffolds, decellularized tissues, and scaffold-free methods, have shown varying levels of success, while in vitro air-liquid interface cultures have provided valuable insights into epithelial modeling. Despite these advances, translating these findings into effective in vivo applications remains difficult due to challenges such as immune responses, inadequate integration with host tissue, and limited long-term functionality of engineered constructs. Overcoming these barriers requires further refinement of cell sources, scaffold materials, and bioactive factors that promote vascularization and sustained epithelial function. Key Messages: This review evaluates the current strategies and modeling, biomaterial scaffolds, cells, and bioactive factors used in tracheal epithelium regeneration, as well as the methods employed to assess their success through histological, functional, and molecular analyses. While significant progress has been made, the development of a safe, functional, and clinically viable tracheal graft remains elusive, underscoring the need for continued innovation in airway tissue engineering. Future advancements in biomaterial design, stem cell technology, and bioreactor-based tissue maturation hold promise for addressing challenges.

1.
Al-Qadi
MO
,
Artenstein
AW
,
Braman
SS
.
The “forgotten zone”: acquired disorders of the trachea in adults
.
Respir Med
.
2013
;
107
(
9
):
1301
13
.
2.
Nomoto
Y
,
Suzuki
T
,
Tada
Y
,
Kobayashi
K
,
Miyake
M
,
Hazama
A
, et al
.
Tissue engineering for regeneration of the tracheal epithelium
.
Ann Otol Rhinol Laryngol
.
2006
;
115
(
7
):
501
6
.
3.
Udelsman
B
,
Mathisen
DJ
,
Ott
HC
.
A reassessment of tracheal substitutes: a systematic review
.
Ann Cardiothorac Surg
.
2018
;
7
(
2
):
175
82
.
4.
Kia’i
N
,
Bajaj
T
.
Histology, respiratory epithelium
.
2019
.
5.
Gartner
LP
.
Textbook of histology e-book: textbook of histology e-book
:
Elsevier Health Sciences
;
2020
.
6.
Soleas
JP
,
Paz
A
,
Marcus
P
,
McGuigan
A
,
Waddell
TK
.
Engineering airway epithelium
.
J Biomed Biotechnol
.
2012
;
2012
(
1
):
982971
10
.
7.
Roomans
GM
.
Tissue engineering and the use of stem/progenitor cells for airway epithelium repair
.
Eur Cell Mater
.
2010
;
19
(
284
):
284
99
.
8.
Choi
SY
,
Kim
HJ
,
Hwang
S
,
Park
J
,
Park
J
,
Lee
JW
, et al
.
The modulation of respiratory epithelial cell differentiation by the thickness of an electrospun poly-ε-carprolactone mesh mimicking the basement membrane
.
Int J Mol Sci
.
2024
;
25
(
12
):
6650
.
9.
Sekiguchi
R
,
Yamada
KM
.
Basement membranes in development and disease
.
Curr Top Dev Biol
.
2018
;
130
:
143
91
.
10.
Feriani
L
,
Juenet
M
,
Fowler
CJ
,
Bruot
N
,
Chioccioli
M
,
Holland
SM
, et al
.
Assessing the collective dynamics of motile cilia in cultures of human airway cells by multiscale DDM
.
Biophys J
.
2017
;
113
(
1
):
109
19
.
11.
Hewitt
RJ
,
Lloyd
CM
.
Regulation of immune responses by the airway epithelial cell landscape
.
Nat Rev Immunol
.
2021
;
21
(
6
):
347
62
.
12.
Dennis
JE
,
Bernardi
KG
,
Kean
TJ
,
Liou
NE
,
Meyer
TK
.
Tissue engineering of a composite trachea construct using autologous rabbit chondrocytes
.
J Tissue Eng Regen Med
.
2018
;
12
(
3
):
e1383
91
.
13.
Gon
Y
,
Hashimoto
S
.
Role of airway epithelial barrier dysfunction in pathogenesis of asthma
.
Allergol Int
.
2018
;
67
(
1
):
12
7
.
14.
Air-liquid interface culture for respiratory research
.
2019
. [Online]. Available from: https://www.stemcell.com/air-liquid-interface-culture-respiratory-research-lp.html
15.
Yamashita
M
,
Kanemaru
S
,
Hirano
S
,
Magrufov
A
,
Tamaki
H
,
Tamura
Y
, et al
.
Tracheal regeneration after partial resection: a tissue engineering approach
.
Larynoscope
.
2007
;
117
(
3
):
497
502
.
16.
Khazraee
S
,
Marashi
SM
,
Kaviani
M
,
Azarpira
N
.
Stem cell-based therapies and tissue engineering of trachea as promising therapeutic methods in mustard gas exposed patients
.
Int J Organ Transplant Med
.
2018
;
9
(
4
):
145
54
.
17.
Okumuş
A
,
Cizmeci
O
,
Kabakas
F
,
Kuvat
SV
,
Bilir
A
,
Aydin
A
.
Circumferential trachea reconstruction with a prefabricated axial bio-synthetic flap: experimental study
.
Int J Pediatr Otorhinolaryngol
.
2005
;
69
(
3
):
335
44
.
18.
Delaere
P
,
Vranckx
J
,
Verleden
G
,
De Leyn
P
,
Van Raemdonck
D
;
Leuven Tracheal Transplant Group
.
Tracheal allotransplantation after withdrawal of immunosuppressive therapy
.
N Engl J Med
.
2010
;
362
(
2
):
138
45
.
19.
Lodes
N
,
Seidensticker
K
,
Perniss
A
,
Nietzer
S
,
Oberwinkler
H
,
May
T
, et al
.
Investigation on ciliary functionality of different airway epithelial cell lines in three-dimensional cell culture
.
Tissue Eng Part A
.
2020
;
26
(
7–8
):
432
40
.
20.
O’Leary
C
,
Gilbert
JL
,
O’Dea
S
,
O’Brien
FJ
,
Cryan
S-A
.
Respiratory tissue engineering: current status and opportunities for the future
.
Tissue Eng Part B Rev
.
2015
;
21
(
4
):
323
44
.
21.
Hamilton
NJ
,
Lee
DDH
,
Gowers
KHC
,
Butler
CR
,
Maughan
EF
,
Jevans
B
, et al
.
Bioengineered airway epithelial grafts with mucociliary function based on collagen IV-and laminin-containing extracellular matrix scaffolds
.
Eur Respir J
.
2020
;
55
(
6
):
1901200
.
22.
Ten Hallers
E
,
Rakhorst
G
,
Marres
HAM
,
Jansen
JA
,
van Kooten
TG
,
Schutte
HK
, et al
.
Animal models for tracheal research
.
Biomaterials
.
2004
;
25
(
9
):
1533
43
.
23.
Jain
P
,
Rauer
SB
,
Möller
M
,
Singh
S
.
Mimicking the natural basement membrane for advanced tissue engineering
.
Biomacromolecules
.
2022
;
23
(
8
):
3081
103
.
24.
Dharmadhikari
S
,
Best
CA
,
King
N
,
Henderson
M
,
Johnson
J
,
Breuer
CK
, et al
.
Mouse model of tracheal replacement with electrospun nanofiber scaffolds
.
Ann Otol Rhinol Laryngol
.
2019
;
128
(
5
):
391
400
.
25.
Gao
M
,
Zhang
H
,
Dong
W
,
Bai
J
,
Gao
B
,
Xia
D
, et al
.
Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair
.
Sci Rep
.
2017
;
7
(
1
):
5246
.
26.
Kanzaki
M
,
Yamato
M
,
Hatakeyama
H
,
Kohno
C
,
Yang
J
,
Umemoto
T
, et al
.
Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea
.
Tissue Eng
.
2006
;
12
(
5
):
1275
83
.
27.
Kim
H
,
Lee
JY
,
Han
H
,
Cho
WW
,
Han
H
,
Choi
A
, et al
.
Improved chondrogenic performance with protective tracheal design of Chitosan membrane surrounding 3D-printed trachea
.
Sci Rep
.
2021
;
11
(
1
):
9258
.
28.
Gilbert
TW
,
Gilbert
S
,
Madden
M
,
Reynolds
SD
,
Badylak
SF
.
Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model
.
Ann Thorac Surg
.
2008
;
86
(
3
):
967
74
.
29.
Jungebluth
P
,
Go
T
,
Asnaghi
A
,
Bellini
S
,
Martorell
J
,
Calore
C
, et al
.
Structural and morphologic evaluation of a novel detergent–enzymatic tissue-engineered tracheal tubular matrix
.
J Thorac Cardiovasc Surg
.
2009
;
138
(
3
):
586
93
.
30.
Liu
L
,
Dharmadhikari
S
,
Shontz
KM
,
Tan
ZH
,
Spector
BM
,
Stephens
B
, et al
.
Regeneration of partially decellularized tracheal scaffolds in a mouse model of orthotopic tracheal replacement
.
J Tissue Eng
.
2021
;
12
:
20417314211017417
.
31.
Zang
M
,
Zhang
Q
,
Chang
EI
,
Mathur
AB
,
Yu
P
.
Decellularized tracheal matrix scaffold for tracheal tissue engineering: in vivo host response
.
Plast Reconstr Surg
.
2013
;
132
(
4
):
549e
59e
.
32.
Kutten
JC
,
McGovern
D
,
Hobson
CM
,
Luffy
SA
,
Nieponice
A
,
Tobita
K
, et al
.
Decellularized tracheal extracellular matrix supports epithelial migration, differentiation, and function
.
Tissue Eng Part A
.
2015
;
21
(
1–2
):
75
84
.
33.
Remlinger
NT
,
Czajka
CA
,
Juhas
ME
,
Vorp
DA
,
Stolz
DB
,
Badylak
SF
, et al
.
Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction
.
Biomaterials
.
2010
;
31
(
13
):
3520
6
.
34.
Park
JH
,
Park
JY
,
Nam
IC
,
Ahn
M
,
Lee
JY
,
Choi
SH
, et al
.
A rational tissue engineering strategy based on three-dimensional (3D) printing for extensive circumferential tracheal reconstruction
.
Biomaterials
.
2018
;
185
:
276
83
.
35.
Karkhanis
T
,
Byju
AG
,
Morales
DL
,
Zafar
F
,
Haridas
B
.
Composite biosynthetic graft for repair of long-segment tracheal stenosis: a pilot in vivo and in vitro feasibility study
.
ASAIO J
.
2024
;
70
(
6
):
527
34
.
36.
Taniguchi
D
,
Matsumoto
K
,
Tsuchiya
T
,
Machino
R
,
Takeoka
Y
,
Elgalad
A
, et al
.
Scaffold-free trachea regeneration by tissue engineering with bio-3D printing
.
Interact Cardiovasc Thorac Surg
.
2018
;
26
(
5
):
745
52
.
37.
Jockenhoevel
S
,
Albers
S
,
Thiebes
AL
,
Gessenich
KL
,
Cornelissen
CG
.
Differentiation of respiratory epithelium in a 3-dimensional co-culture with fibroblasts embedded in fibrin gel
.
Multidiscip Respir Med
.
2016
;
11
:
1
9
.
38.
Zhang
H
,
Fu
W
,
Xu
Z
.
Re-epithelialization: a key element in tracheal tissue engineering
.
Regen Med
.
2015
;
10
(
8
):
1005
23
.
39.
Kardia
E
,
Mohamed
R
,
Yahaya
BH
.
Stimulatory secretions of airway epithelial cells accelerate early repair of tracheal epithelium
.
Sci Rep
.
2017
;
7
(
1
):
11732
.
40.
Blanpain
C
,
Horsley
V
,
Fuchs
E
.
Epithelial stem cells: turning over new leaves
.
Cell
.
2007
;
128
(
3
):
445
58
.
41.
Han
Y
,
Yang
J
,
Fang
J
,
Zhou
Y
,
Candi
E
,
Wang
J
, et al
.
The secretion profile of mesenchymal stem cells and potential applications in treating human diseases
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
92
.
42.
Prewitz
MC
,
Seib
FP
,
von Bonin
M
,
Friedrichs
J
,
Stißel
A
,
Niehage
C
, et al
.
Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments
.
Nat Methods
.
2013
;
10
(
8
):
788
94
.
43.
Law
JX
,
Liau
LL
,
Aminuddin
BS
,
Ruszymah
BHI
.
Tissue-engineered trachea: a review
.
Int J Pediatr Otorhinolaryngol
.
2016
;
91
:
55
63
.
44.
Okano
W
,
Nomoto
Y
,
Wada
I
,
Kobayashi
K
,
Miyake
M
,
Nakamura
T
, et al
.
Bioengineered trachea with fibroblasts in a rabbit model
.
Ann Otol Rhinol Laryngol
.
2009
;
118
(
11
):
796
804
.
45.
Franzdóttir
SR
,
Axelsson
IT
,
Arason
AJ
,
Baldursson
O
,
Gudjonsson
T
,
Magnusson
MK
.
Airway branching morphogenesis in three dimensional culture
.
Respir Res
.
2010
;
11
:
162
10
.
46.
Dikina
AD
,
Alt
DS
,
Herberg
S
,
McMillan
A
,
Strobel
HA
,
Zheng
Z
, et al
.
A modular strategy to engineer complex tissues and organs
.
Adv Sci
.
2018
;
5
(
5
):
1700402
.
47.
Battiston
KG
,
Cheung
JW
,
Jain
D
,
Santerre
JP
.
Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds
.
Biomaterials
.
2014
;
35
(
15
):
4465
76
.
48.
Kobayashi
K
,
Suzuki
T
,
Nomoto
Y
,
Tada
Y
,
Miyake
M
,
Hazama
A
, et al
.
A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells
.
Biomaterials
.
2010
;
31
(
18
):
4855
63
.
49.
Chen
L-J
,
Kaji
H
.
Modeling angiogenesis with micro-and nanotechnology
.
Lab Chip
.
2017
;
17
(
24
):
4186
219
.
50.
Go
T
,
Jungebluth
P
,
Baiguero
S
,
Asnaghi
A
,
Martorell
J
,
Ostertag
H
, et al
.
Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs
.
J Thorac Cardiovasc Surg
.
2010
;
139
(
2
):
437
43
.
51.
Kim
IG
,
Park
SA
,
Lee
SH
,
Choi
JS
,
Cho
H
,
Lee
SJ
, et al
.
Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes
.
Sci Rep
.
2020
;
10
(
1
):
4326
.
52.
Kobayashi
K
,
Nomoto
Y
,
Suzuki
T
,
Tada
Y
,
Miyake
M
,
Hazama
A
, et al
.
Effect of fibroblasts on tracheal epithelial regeneration in vitro
.
Tissue Eng
.
2006
;
12
(
9
):
2619
28
.
53.
Nakamura
T
,
Sato
T
,
Araki
M
,
Ichihara
S
,
Nakada
A
,
Yoshitani
M
, et al
.
In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea
.
J Thorac Cardiovasc Surg
.
2009
;
138
(
4
):
811
9
.
54.
Lee
DY
,
Lee
JH
,
Ahn
HJ
,
Oh
SH
,
Kim
TH
,
Kim
HB
, et al
.
Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration
.
Biomaterials
.
2015
;
44
:
134
42
.
55.
Özpolat
B
,
Gürpınar
ÖA
,
Ayva
,
Gazyağcı
S
,
Niyaz
M
.
The effect of basic fibroblast growth factor and adipose tissue-derived mesenchymal stem cells on wound healing, epithelization and angiogenesis in a tracheal resection and end-to-end anastomosis rat model
.
Turk Gogus Kalp Dama
.
2013
;
21
(
4
):
1010
9
.
56.
Hawkins
FJ
,
Suzuki
S
,
Beermann
ML
,
Barillà
C
,
Wang
R
,
Villacorta-Martin
C
, et al
.
Derivation of airway basal stem cells from human pluripotent stem cells
.
Cell Stem Cell
.
2021
;
28
(
1
):
79
95. e8
.
57.
Ikeda
M
,
Imaizumi
M
,
Yoshie
S
,
Nakamura
R
,
Otsuki
K
,
Murono
S
, et al
.
Implantation of induced pluripotent stem cell–derived tracheal epithelial cells
.
Ann Otol Rhinol Laryngol
.
2017
;
126
(
7
):
517
24
.
58.
Thanaskody
K
,
Jusop
A
,
Tye
G
,
Wan Kamarul Zaman
W
,
Dass
S
,
Nordin
F
.
MSCs vs. iPSCs: potential in therapeutic applications
.
Front Cell Dev Biol
.
2022
;
10
:
1005926
.
59.
Dhasmana
A
,
Singh
A
,
Rawal
S
.
Biomedical grafts for tracheal tissue repairing and regeneration “Tracheal tissue engineering: an overview”
.
J Tissue Eng Regen Med
.
2020
;
14
(
5
):
653
72
.
60.
Feng
X
,
Hu
Y
,
Cao
L
,
Liu
L
.
Artificial trachea design, construction, and application: materials, cells, and growth factors
.
Appl Mater Today
.
2023
;
35
:
101968
.
61.
Gadalla
D
,
Tchoukalova
YD
,
Lott
DG
.
Regenerating airway epithelium using fibrous biomimetic basement membranes
.
J Biomed Mater Res A
.
2022
;
110
(
6
):
1251
62
.
62.
Mak
KM
,
Mei
R
.
Basement membrane type IV collagen and laminin: an overview of their biology and value as fibrosis biomarkers of liver disease
.
Anat Rec
.
2017
;
300
(
8
):
1371
90
.
63.
Islam
MS
,
Greco
S
,
Janjusevic
M
,
Ciavattini
A
,
Giannubilo
SR
,
D’Adderio
A
, et al
.
Growth factors and pathogenesis
.
Best Pract Res Clin Obstet Gynaecol
.
2016
;
34
:
25
36
.
64.
Kreimendahl
F
,
Ossenbrink
S
,
Köpf
M
,
Westhofen
M
,
Schmitz-Rode
T
,
Fischer
H
, et al
.
Combination of vascularization and cilia formation for three-dimensional airway tissue engineering
.
J Biomed Mater Res A
.
2019
;
107
(
9
):
2053
62
.
65.
Zhao
J
,
Han
Y
,
Liang
Z
,
Zhang
Z
,
Lu
Q
,
Yan
X
, et al
.
Sustained local application of epidermal growth factor to accelerate reepithelialization of tracheal grafts
.
J Thorac Cardiovasc Surg
.
2010
;
140
(
1
):
209
15
.
66.
Costea
DE
,
Loro
LL
,
Dimba
EAO
,
Vintermyr
OK
,
Johannessen
AC
.
Crucial effects of fibroblasts and keratinocyte growth factor on morphogenesis of reconstituted human oral epithelium
.
J Invest Dermatol
.
2003
;
121
(
6
):
1479
86
.
67.
Hegmans
JP
,
Gerber
PJ
,
Lambrecht
BN
.
“Exosomes,” functional proteomics: methods and protocols
.
2008
; p.
97
109
.
68.
Zhang
X
,
Jing
H
,
Luo
K
,
Shi
B
,
Luo
Q
,
Zhu
Z
, et al
.
Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea
.
Mater Sci Eng C Mater Biol Appl
.
2021
;
129
:
112371
.
69.
Lu
Y
,
Shan
Y
,
Zhu
J
,
Shen
Z
,
Chen
W
,
Chen
H
, et al
.
Enhancing epithelial regeneration with gelatin methacryloyl hydrogel loaded with extracellular vesicles derived from adipose mesenchymal stem cells for decellularized tracheal patching
.
Int J Biol Macromol
.
2025
;
284
(
Pt 1
):
137927
.
70.
Wang
Z
,
Wang
Z
,
Lu
WW
,
Zhen
W
,
Yang
D
,
Peng
S
.
Novel biomaterial strategies for controlled growth factor delivery for biomedical applications
.
NPG Asia Mater
.
2017
;
9
(
10
):
e435
.
71.
Ziegler
J
,
Anger
D
,
Krummenauer
F
,
Breitig
D
,
Fickert
S
,
Guenther
KP
.
Biological activity of recombinant human growth factors released from biocompatible bone implants
.
J Biomed Mater Res A
.
2008
;
86
(
1
):
89
97
.
72.
Liu
Y
,
Zheng
K
,
Meng
Z
,
Wang
L
,
Liu
X
,
Guo
B
, et al
.
A cell-free tissue-engineered tracheal substitute with sequential cytokine release maintained airway opening in a rabbit tracheal full circumferential defect model
.
Biomaterials
.
2023
;
300
:
122208
.
73.
Prescott
RA
,
Pankow
AP
,
de Vries
M
,
Crosse
KM
,
Patel
RS
,
Alu
M
, et al
.
A comparative study of in vitro air–liquid interface culture models of the human airway epithelium evaluating cellular heterogeneity and gene expression at single cell resolution
.
Respir Res
.
2023
;
24
(
1
):
213
.
74.
Walters
MS
,
Gomi
K
,
Ashbridge
B
,
Moore
MAS
,
Arbelaez
V
,
Heldrich
J
, et al
.
Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity
.
Respir Res
.
2013
;
14
:
135
18
.
75.
Bonser
LR
,
Erle
DJ
.
Airway mucus and asthma: the role of MUC5AC and MUC5B
.
J Clin Med
.
2017
;
6
(
12
):
112
.
76.
Meyerholz
DK
,
Beck
AP
,
Goeken
JA
,
Leidinger
MR
,
Ofori-Amanfo
GK
,
Brown
HC
, et al
.
Glycogen depletion can increase the specificity of mucin detection in airway tissues
.
BMC Res Notes
.
2018
;
11
:
763
5
.
77.
Amor-Carro
Ó
,
White
KM
,
Fraga-Iriso
R
,
Mariñas-Pardo
LA
,
Núñez-Naveira
L
,
Lema-Costa
B
, et al
.
Airway hyperresponsiveness, inflammation, and pulmonary emphysema in rodent models designed to mimic exposure to fuel oil–derived volatile organic compounds encountered during an experimental oil spill
.
Environ Health Perspect
.
2020
;
128
(
2
):
027003
.
78.
Wu
C-T
,
Lidsky
PV
,
Xiao
Y
,
Cheng
R
,
Lee
IT
,
Nakayama
T
, et al
.
SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming
.
Cell
.
2023
;
186
(
1
):
112
30. e20
.
79.
Möckel
M
,
Baldok
N
,
Walles
T
,
Hartig
R
,
Müller
AJ
,
Reichl
U
, et al
.
Human 3D airway tissue models for real-time microscopy: visualizing respiratory virus spreading
.
Cells
.
2022
;
11
(
22
):
3634
.
80.
Van den Bossche
S
,
Ostyn
L
,
Vandendriessche
V
,
Rigauts
C
,
De Keersmaecker
H
,
Nickerson
CA
, et al
.
The development and characterization of in vivo-like three-dimensional models of bronchial epithelial cell lines
.
Eur J Pharm Sci
.
2023
;
190
:
106567
.
81.
Wang
S
,
Shan
S
,
Zhang
J
,
Liu
Z
,
Gu
X
,
Hong
Y
, et al
.
Airway epithelium regeneration by photoactivated basal cells
.
J Photochem Photobiol B
.
2023
;
245
:
112732
.
82.
Shelmerdine
SC
,
Ashworth
MT
,
Calder
AD
,
Muthialu
N
,
Arthurs
OJ
.
Micro-CT of tracheal stenosis in trisomy 21
.
Thorax
.
2019
;
74
(
4
):
419
20
.
83.
Qi
C
,
Cheng
L
,
Huang
C
.
Artificial trachea from microtissue engineering and three-dimensional printing for tracheal personalized repair
.
Tissue Eng Part A
.
2024
;
30
(
9–10
):
393
403
.
84.
Ruiz García
S
,
Deprez
M
,
Lebrigand
K
,
Cavard
A
,
Paquet
A
,
Arguel
MJ
, et al
.
Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures
.
Development
.
2019
;
146
(
20
):
dev177428
.
85.
Wang
G
,
Lou
HH
,
Salit
J
,
Leopold
PL
,
Driscoll
S
,
Schymeinsky
J
, et al
.
Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity
.
Respir Res
.
2019
;
20
:
196
14
.
86.
Song
D
,
Iverson
E
,
Kaler
L
,
Boboltz
A
,
Scull
MA
,
Duncan
GA
.
MUC5B mobilizes and MUC5AC spatially aligns mucociliary transport on human airway epithelium
.
Sci Adv
.
2022
;
8
(
47
):
eabq5049
.
87.
Scopulovic
L
,
Francis
D
,
Pandzic
E
,
Francis
R
.
Quantifying cilia beat frequency using high-speed video microscopy: assessing frame rate requirements when imaging different ciliated tissues
.
Physiol Rep
.
2022
;
10
(
11
):
e15349
.
88.
Bednarek
R
.
In vitro methods for measuring the permeability of cell monolayers
.
Methods Protoc
.
2022
;
5
(
1
):
17
.
89.
Clemente-Suárez
VJ
,
Martín-Rodríguez
A
,
Redondo-Flórez
L
,
Villanueva-Tobaldo
CV
,
Yáñez-Sepúlveda
R
,
Tornero-Aguilera
JF
.
Epithelial transport in disease: an overview of pathophysiology and treatment
.
Cells
.
2023
;
12
(
20
):
2455
.
90.
Michi
AN
,
Proud
D
.
A toolbox for studying respiratory viral infections using air-liquid interface cultures of human airway epithelial cells
.
Am J Physiol Lung Cell Mol Physiol
.
2021
;
321
(
1
):
L263
80
.
91.
Reula
A
,
Pitarch-Fabregat
J
,
Milara
J
,
Cortijo
J
,
Mata-Roig
M
,
Milian
L
, et al
.
High-speed video microscopy for primary ciliary dyskinesia diagnosis: a study of ciliary motility variations with time and Temperature
.
Diagnostics
.
2021
;
11
(
7
):
1301
.
92.
Bustamante-Marin
XM
,
Ostrowski
LE
.
Cilia and mucociliary clearance
.
Cold Spring Harb Perspect Biol
.
2017
;
9
(
4
):
a028241
.
93.
Katz
I
,
Zwas
T
,
Baum
GL
,
Aharonson
E
,
Belfer
B
.
Ciliary beat frequency and mucociliary clearance: what is the relationship
.
Chest
.
1987
;
92
(
3
):
491
3
.
94.
Chen
H
,
Wu
S
,
Lu
R
,
Zhang
Y-G.
,
Zheng
Y
,
Sun
J
.
Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury
.
PLoS One
.
2014
;
9
(
7
):
e101925
.
95.
Harhaj
NS
,
Antonetti
DA
.
Regulation of tight junctions and loss of barrier function in pathophysiology
.
Int J Biochem Cell Biol
.
2004
;
36
(
7
):
1206
37
.
96.
Carlier
FM
,
de Fays
C
,
Pilette
C
.
Epithelial barrier dysfunction in chronic respiratory diseases
.
Front Physiol
.
2021
;
12
:
691227
.
97.
Ganesan
S
,
Comstock
AT
,
Sajjan
US
.
Barrier function of airway tract epithelium
.
Tissue barriers
.
2013
;
1
(
4
):
e24997
.
98.
Elliott
MJ
,
De Coppi
P
,
Speggiorin
S
,
Roebuck
D
,
Butler
CR
,
Samuel
E
, et al
.
Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study
.
Lancet
.
2012
;
380
(
9846
):
994
1000
.
99.
Kutten
JC
,
McGovern
D
,
Hobson
CM
,
Luffy
SA
,
Nieponice
A
,
Tobita
K
, et al
.
Decellularized tracheal extracellular matrix supports epithelial migration, differentiation, and function
.
Tissue Eng Part A
.
2015
;
21
(
1–2
):
75
84
.
100.
Dennis
JE
,
Bernardi
KG
,
Kean
TJ
,
Liou
NE
,
Meyer
TK
.
Tissue engineering of a composite trachea construct using autologous rabbit chondrocytes
.
J Tissue Eng Regen Med
.
2018
;
12
(
3
):
e1383
91
.
101.
Taniguchi
D
,
Matsumoto
K
,
Tsuchiya
T
,
Machino
R
,
Takeoka
Y
,
Elgalad
A
, et al
.
Scaffold-free trachea regeneration by tissue engineering with bio-3D printing
.
Interact Cardiovasc Thorac Surg
.
2018
;
26
(
5
):
745
52
.
102.
Dharmadhikari
S
,
Best
CA
,
King
N
,
Henderson
M
,
Johnson
J
,
Breuer
CK
, et al
.
Mouse model of tracheal replacement with electrospun nanofiber scaffolds
.
Ann Otol Rhinol Laryngol
.
2019
;
128
(
5
):
391
400
.
103.
Yamashita
M
,
Kanemaru
S
,
Hirano
S
,
Magrufov
A
,
Tamaki
H
,
Tamura
Y
, et al
.
Tracheal regeneration after partial resection: a tissue engineering approach
.
Laryngoscope
.
2007
;
117
(
3
):
497
502
.
104.
Teramachi
M
,
Okumura
N
,
Nakamura
T
,
Yamamoto
Y
,
Kiyotani
T
,
Takimoto
Y
, et al
.
Intrathoracic tracheal reconstruction with a collagen-conjugated prosthesis: evaluation of the efficacy of omental wrapping
.
J Thorac Cardiovasc Surg
.
1997
;
113
(
4
):
701
11
.
105.
Park
J-H
,
Yoon
JK
,
Lee
JB
,
Shin
YM
,
Lee
KW
,
Bae
SW
, et al
.
Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes
.
Sci Rep
.
2019
;
9
(
1
):
2103
.
106.
Go
T
,
Jungebluth
P
,
Baiguero
S
,
Asnaghi
A
,
Martorell
J
,
Ostertag
H
, et al
.
Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs
.
J Thorac Cardiovasc Surg
.
2010
;
139
(
2
):
437
43
.
107.
Kim
IG
,
Park
SA
,
Lee
SH
,
Choi
JS
,
Cho
H
,
Lee
SJ
, et al
.
Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes
.
Sci Rep
.
2020
;
10
(
1
):
4326
.
108.
Sato
T
,
Araki
M
,
Nakajima
N
,
Omori
K
,
Nakamura
T
.
Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses
.
J Thorac Cardiovasc Surg
.
2010
;
139
(
1
):
26
31
.
109.
Nomoto
Y
,
Suzuki
T
,
Tada
Y
,
Kobayashi
K
,
Miyake
M
,
Hazama
A
, et al
.
Tissue engineering for regeneration of the tracheal epithelium
.
Ann Otol Rhinol Laryngol
.
2006
;
115
(
7
):
501
6
.
110.
Suzuki
T
,
Kobayashi
K
,
Tada
Y
,
Suzuki
Y
,
Wada
I
,
Nakamura
T
, et al
.
Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells
.
Ann Otol Rhinol Laryngol
.
2008
;
117
(
6
):
453
63
.
111.
Bae
S-W
,
Lee
KW
,
Park
JH
,
Lee
J
,
Jung
CR
,
Yu
J
, et al
.
3D bioprinted artificial trachea with epithelial cells and chondrogenic-differentiated bone marrow-derived mesenchymal stem cells
.
Int J Mol Sci
.
2018
;
19
(
6
):
1624
.
112.
Liu
L
,
Dharmadhikari
S
,
Spector
BM
,
Tan
ZH
,
Van Curen
CE
,
Agarwal
R
, et al
.
Tissue-engineered composite tracheal grafts create mechanically stable and biocompatible airway replacements
.
J Tissue Eng
.
2022
;
13
:
20417314221108791
.
113.
Mohd Heikal
M
,
Aminuddin
B
,
Jeevanan
J
,
Chen
H
,
Sharifah
S
,
Ruszymah
B
.
Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model
.
Cells Tissues Organs
.
2010
;
192
(
5
):
292
302
.
114.
Shin
YS
,
Lee
BH
,
Choi
JW
,
Min
BH
,
Chang
JW
,
Yang
SS
, et al
.
Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold
.
Int J Pediatr Otorhinolaryngol
.
2014
;
78
(
1
):
32
8
.
115.
Liu
Y
,
Zheng
K
,
Meng
Z
,
Wang
L
,
Liu
X
,
Guo
B
, et al
.
A cell-free tissue-engineered tracheal substitute with sequential cytokine release maintained airway opening in a rabbit tracheal full circumferential defect model
.
Biomaterials
.
2023
;
300
:
122208
.
116.
Kim
DY
,
Pyun
J
,
Choi
JW
,
Kim
JH
,
Lee
JS
,
Shin
HA
, et al
.
Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation
.
Laryngoscope
.
2010
;
120
(
1
):
30
8
.
117.
Zhang
X
,
Jing
H
,
Luo
K
,
Shi
B
,
Luo
Q
,
Zhu
Z
, et al
.
Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea
.
Mater Sci Eng C Mater Biol Appl
.
2021
;
129
:
112371
.
118.
Kobayashi
K
,
Suzuki
T
,
Nomoto
Y
,
Tada
Y
,
Miyake
M
,
Hazama
A
, et al
.
A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells
.
Biomaterials
.
2010
;
31
(
18
):
4855
63
.
119.
Jung
SY
,
Lee
SJ
,
Kim
HY
,
Park
HS
,
Wang
Z
,
Kim
HJ
, et al
.
3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study
.
Biofabrication
.
2016
;
8
(
4
):
045015
.
120.
Vrana
NE
,
Dupret-Bories
A
,
Bach
C
,
Chaubaroux
C
,
Coraux
C
,
Vautier
D
, et al
.
Modification of macroporous titanium tracheal implants with biodegradable structures: tracking in vivo integration for determination of optimal in situ epithelialization conditions
.
Biotechnol Bioeng
.
2012
;
109
(
8
):
2134
46
.
121.
Tsukada
H
,
Majid
A
,
Kent
MS
,
Ernst
A
,
DeCamp
MM
,
Gangadharan
SP
.
Two-stage end-to-end reconstruction of long-segment tracheal defects with a bioabsorbable scaffold grafting technique in a canine model
.
Ann Thorac Surg
.
2012
;
93
(
4
):
1088
92
.
122.
Sun
W
,
Yang
Y
,
Wang
L
,
Tang
H
,
Zhang
L
,
She
Y
, et al
.
Utilization of an acellular cartilage matrix-based photocrosslinking hydrogel for tracheal cartilage regeneration and circumferential tracheal repair
.
Adv Funct Mater
.
2022
;
32
(
31
):
2201257
.
123.
Maughan
EF
,
Butler
CR
,
Crowley
C
,
Teoh
GZ
,
den Hondt
M
,
Hamilton
NJ
, et al
.
A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model
.
Laryngoscope
.
2017
;
127
(
12
):
E449
57
.
124.
Lee
SJ
,
Choi
JS
,
Eom
MR
,
Jo
HH
,
Kwon
IK
,
Kwon
SK
, et al
.
Dexamethasone loaded bilayered 3D tubular scaffold reduces restenosis at the anastomotic site of tracheal replacement: in vitro and in vivo assessments
.
Nanoscale
.
2020
;
12
(
8
):
4846
58
.
125.
Huo
Y
,
Xu
Y
,
Wu
X
,
Gao
E
,
Zhan
A
,
Chen
Y
, et al
.
Functional trachea reconstruction using 3D-bioprinted native-like tissue architecture based on designable tissue-specific bioinks
.
Adv Sci
.
2022
;
9
(
29
):
2202181
.
126.
Shai
S-E
,
Lai
YL
,
Hung
YW
,
Hsieh
CW
,
Su
KC
,
Wang
CH
, et al
.
Long-term survival and regeneration following transplantation of 3d-printed biodegradable pcl tracheal grafts in large-scale porcine models
.
Bioengineering
.
2024
;
11
(
8
):
832
.
127.
Kreber
L
,
Liu
L
,
Dharmadhikari
S
,
Tan
ZH
,
Chan
C
,
Huddle
J
, et al
.
Assessing the biocompatibility and regeneration of electrospun-nanofiber composite tracheal grafts
.
Laryngoscope
.
2024
;
134
(
3
):
1155
62
.
128.
Shan
Y
,
Shen
Z
,
Lu
Y
,
Zhu
J
,
Sun
F
,
Chen
W
, et al
.
Reconstruction of tracheal window-shape defect by 3D printed polycaprolatone scaffold coated with Silk Fibroin Methacryloyl
.
Biotechnol J
.
2024
;
19
(
1
):
2300040
.
129.
Qi
C
,
Cheng
L
,
Huang
C
.
Artificial trachea from microtissue engineering and three-dimensional printing for tracheal personalized repair
.
Tissue Eng Part A
.
2024
;
30
(
9–10
):
393
403
.
130.
Karkhanis
T
,
Byju
AG
,
Morales
DL
,
Zafar
F
,
Haridas
B
.
Composite biosynthetic graft for repair of long-segment tracheal stenosis: a pilot in vivo and in vitro feasibility study
.
ASAIO J
.
2024
;
70
(
6
):
527
34
.
131.
Lu
Y
,
Shan
Y
,
Zhu
J
,
Shen
Z
,
Chen
W
,
Chen
H
, et al
.
Enhancing epithelial regeneration with gelatin methacryloyl hydrogel loaded with extracellular vesicles derived from adipose mesenchymal stem cells for decellularized tracheal patching
.
Int J Biol Macromol
.
2025
;
284
(
Pt 1
):
137927
.
132.
Iwasaki
S
,
Deguchi
K
,
Iwai
R
,
Nakayama
Y
,
Okuyama
H
.
Regeneration process of an autologous tissue-engineered trachea (aTET) in a rat patch tracheoplasty model
.
Bioengineering
.
2024
;
11
(
3
):
243
.
133.
Goh
CS-L
,
Joethy
J-V
,
Tan
B-K
,
Wong
M
.
Large animal models for long-segment tracheal reconstruction: a systematic review
.
J Surg Res
.
2018
;
231
:
140
53
.
134.
Suzuki
T
,
Kobayashi
K
,
Tada
Y
,
Suzuki
Y
,
Wada
I
,
Nakamura
T
, et al
.
Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells
.
Ann Otol Rhinol Laryngol
.
2008
;
117
(
6
):
453
63
.
135.
Hamilton
N
,
Bullock
AJ
,
MacNeil
S
,
Janes
SM
,
Birchall
M
.
Tissue engineering airway mucosa: a systematic review
.
Laryngoscope
.
2014
;
124
(
4
):
961
8
.
136.
Omori
K
,
Tada
Y
,
Suzuki
T
,
Nomoto
Y
,
Matsuzuka
T
,
Kobayashi
K
, et al
.
Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea
.
Ann Otol Rhinol Laryngol
.
2008
;
117
(
9
):
673
8
.
137.
Sato
T
,
Araki
M
,
Nakajima
N
,
Omori
K
,
Nakamura
T
.
Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses
.
J Thorac Cardiovasc Surg
.
2010
;
139
(
1
):
26
31
.
138.
Mohd Heikal
M
,
Aminuddin
B
,
Jeevanan
J
,
Chen
H
,
Sharifah
S
,
Ruszymah
B
.
Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model
.
Cells tissues organs
.
2010
;
192
(
5
):
292
302
.
139.
Shin
YS
,
Lee
BH
,
Choi
JW
,
Min
BH
,
Chang
JW
,
Yang
SS
, et al
.
Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold
.
Int J Pediatr Otorhinolaryngol
.
2014
;
78
(
1
):
32
8
.
140.
Park
J-H
,
Yoon
JK
,
Lee
JB
,
Shin
YM
,
Lee
KW
,
Bae
SW
, et al
.
Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes
.
Sci Rep
.
2019
;
9
(
1
):
2103
.
141.
Omori
K
,
Nakamura
T
,
Kanemaru
S
,
Asato
R
,
Yamashita
M
,
Tanaka
S
, et al
.
Regenerative medicine of the trachea: the first human case
.
Ann Otol Rhinol Laryngol
.
2005
;
114
(
6
):
429
33
.
142.
Teramachi
M
,
Okumura
N
,
Nakamura
T
,
Yamamoto
Y
,
Kiyotani
T
,
Takimoto
Y
, et al
.
Intrathoracic tracheal reconstruction with a collagen-conjugated prosthesis: evaluation of the efficacy of omental wrapping
.
J Thorac Cardiovasc Surg
.
1997
;
113
(
4
):
701
11
.
143.
Cyranoski
D
.
Investigations launched into artificial tracheas
.
Nature
.
2014
;
516
(
7529
):
16
7
.
144.
Delaere
PR
,
Van Raemdonck
D
.
The trachea: the first tissue-engineered organ
.
J Thorac Cardiovasc Surg
.
2014
;
147
(
4
):
1128
32
.
145.
Macchiarini
P
,
Jungebluth
P
,
Go
T
,
Asnaghi
MA
,
Rees
LE
,
Cogan
TA
, et al
.
RETRACTED: clinical transplantation of a tissue-engineered airway
.
Lancet
.
2008
;
372
(
9655
):
2023
30
.
146.
Macchiarini
P
,
Walles
T
,
Biancosino
C
,
Mertsching
H
.
First human transplantation of a bioengineered airway tissue
.
J Thorac Cardiovasc Surg
.
2004
;
128
(
4
):
638
41
.
147.
Martinod
E
,
Seguin
A
,
Pfeuty
K
,
Fornes
P
,
Kambouchner
M
,
Azorin
JF
, et al
.
Long-term evaluation of the replacement of the trachea with an autologous aortic graft
.
Ann Thorac Surg
.
2003
;
75
(
5
):
1572
8
.
148.
de Kanter
A-FJ
,
Jongsma
KR
,
Verhaar
MC
,
Bredenoord
AL
.
The ethical implications of tissue engineering for regenerative purposes: a systematic review
.
Tissue Eng Part B Rev
.
2023
;
29
(
2
):
167
87
.
149.
Jungebluth
P
,
Moll
G
,
Baiguera
S
,
Macchiarini
P
.
Tissue-engineered airway: a regenerative solution
.
Clin Pharmacol Ther
.
2012
;
91
(
1
):
81
93
.
150.
Dzobo
K
,
Thomford
NE
,
Senthebane
DA
,
Shipanga
H
,
Rowe
A
,
Dandara
C
, et al
.
Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine
.
Stem Cells Int
.
2018
;
2018
(
1
):
2495848
.
151.
Parihar
A
,
Pandita
V
,
Kumar
A
,
Parihar
DS
,
Puranik
N
,
Bajpai
T
, et al
.
3D printing: advancement in biogenerative engineering to combat shortage of organs and bioapplicable materials
.
Regen Eng Transl Med
.
2021
;
8
(
2
):
173
99
.
152.
Park
JH
,
Hong
JM
,
Ju
YM
,
Jung
JW
,
Kang
HW
,
Lee
SJ
, et al
.
A novel tissue-engineered trachea with a mechanical behavior similar to native trachea
.
Biomaterials
.
2015
;
62
:
106
15
.
153.
Zhang
B
,
Sun
F
,
Lu
Y
,
Wang
Z
,
Shen
Z
,
Yuan
L
, et al
.
A novel decellularized trachea preparation method for the rapid construction of a functional tissue engineered trachea to repair tracheal defects
.
J Mater Chem B
.
2022
;
10
(
25
):
4810
22
.
154.
Wei
S
,
Zhang
Y
,
Luo
F
,
Duan
K
,
Li
M
,
Lv
G
.
Tissue-engineered tracheal implants: advancements, challenges, and clinical considerations
.
Bioeng Transl Med
.
2024
;
9
(
4
):
e10671
.
155.
Maughan
EF
,
Hynds
RE
,
Proctor
TJ
,
Janes
SM
,
Elliott
M
,
Birchall
MA
, et al
.
Autologous cell seeding in tracheal tissue engineering
.
Curr Stem Cell Rep
.
2017
;
3
(
4
):
279
89
.
156.
Masson-Meyers
DS
,
Tayebi
L
.
Vascularization strategies in tissue engineering approaches for soft tissue repair
.
J Tissue Eng Regen Med
.
2021
;
15
(
9
):
747
62
.
157.
Chiang
T
,
Pepper
V
,
Best
C
,
Onwuka
E
,
Breuer
CK
.
Clinical translation of tissue engineered trachea grafts
.
Ann Otol Rhinol Laryngol
.
2016
;
125
(
11
):
873
85
.
158.
Pacetti
A
.
FDA approves 3D-printed airway stents developed by Cleveland clinic doctor
:
Cleveland Clinic Newsroom
;
2020
.
159.
Gonfiotti
A
,
Jaus
MO
,
Barale
D
,
Baiguera
S
,
Comin
C
,
Lavorini
F
, et al
.
The first tissue-engineered airway transplantation: 5-year follow-up results
.
Lancet
.
2014
;
383
(
9913
):
238
44
.
160.
Hamilton
N
,
Kanani
M
,
Roebuck
D
,
Hewitt
R
,
Cetto
R
,
Culme-Seymour
E
, et al
.
Tissue-engineered tracheal replacement in a child: a 4-year follow-up study
.
Am J Transplant
.
2015
;
15
(
10
):
2750
7
.
161.
Berg
M
,
Ejnell
H
,
Kovács
A
,
Nayakawde
N
,
Patil
PB
,
Joshi
M
, et al
.
Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report
.
Tissue Eng Part A
.
2014
;
20
(
1–2
):
389
97
.
162.
Delaere
P
.
Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study
.
2018
.
163.
Fabre
D
,
Kolb
F
,
Fadel
E
,
Leymarie
N
,
Mussot
S
,
Le Chevalier
T
, et al
.
Autologous tracheal replacement: from research to clinical practice
.
Presse Med
.
2013
;
42
(
9 Pt 2
):
e334
41
.
164.
Paternoster
JL
,
Vranckx
JJ
.
State of the art of clinical applications of tissue engineering in 2021
.
Tissue Eng Part B Rev
.
2022
;
28
(
3
):
592
612
.
165.
Kanemaru
S-I
,
Hirano
S
,
Umeda
H
,
Yamashita
M
,
Suehiro
A
,
Nakamura
T
, et al
.
A tissue-engineering approach for stenosis of the trachea and/or cricoid
.
Acta Oto-Laryngologica
.
2010
;
130
(
Suppl 563
):
79
83
.
166.
Roberts
M
.
Surgeons carry out first synthetic windpipe transplant
. BBC News.
2016
.
167.
Elliott
MJ
,
Butler
CR
,
Varanou-Jenkins
A
,
Partington
L
,
Carvalho
C
,
Samuel
E
, et al
.
Tracheal replacement therapy with a stem cell-seeded graft: lessons from compassionate use application of a GMP-compliant tissue-engineered medicine
.
Stem Cells Transl Med
.
2017
;
6
(
6
):
1458
64
.
168.
Development of the practical usage based technology using the patient customized bioprinting trachea for the regeneration of respiratory tract (trachea)
. [Online] Available from: https://clinicaltrials.gov/study/NCT06051747
169.
Listek
V
.
World’s first bioprinted trachea transplant marks a new era in medical innovation
. https://3dprint.com/308217/worlds-first-bioprinted-trachea-transplant-marks-a-new-era-in-medical-innovation/(accessed February 20, 2025).
170.
A multi-center trial to assess the safety and effectiveness of a bioresorbable tracheobronchial splint in pediatric subjects with clinically significant tracheobronchomalacia
. [Online] Available from: https://clinicaltrials.gov/study/NCT06406452
You do not currently have access to this content.