Introduction: This study aimed to examine the transforming growth factor (TGF)-β signaling pathway during secondary palate fusion by transfecting single and double small interfering RNA (siRNAs) for TGF-β2 and -β3. This investigation also focused on understanding the phenotype of palatal development. Methods: siRNAs targeting TGF-β2 and -β3 were used in an organ culture model of fusion of the secondary palate of 13-day embryonic ICR mice cultured for up to 72 h. The palatal shelves were collected at different times following the initiation of organ culture and were examined for TGF-β2 and -β3 gene expression. Downstream signaling was characterized using Western blotting and PCR. Results: In the double siRNA-treated palatal shelves, approximately 90% (91% anterior, 89% posterior with phenotype A) showed fusion failure in hematoxylin and eosin staining. Phosphorylation of Smad-dependent and -independent signaling showed a significant reduction in phosphorylation in double knockdown palate organ cultures when compared to single knockdown cultures. Although, the expression of matrix metalloproteinase 13 and TIMP2 were small influenced by siTGF-β2, the extracellular matrix and transcription factor expressions showed to be significantly reduced in double knockdown palate compared to single knockdown palates. Conclusions: This study demonstrates that double siRNAs targeting TGF-β2 and -β3 results in phenotypes during secondary palatal fusion and that they could be affected phosphorylation of Smad-dependent and -independent signaling synergistically compared to single knockdown of TGF-β2 and -β3. The results of this study demonstrate important functions during secondary palatal fusion and will contribute to our understanding of the etiology of cleft palate.

1.
Nakajima
A
,
F Shuler
C
,
Gulka
AOD
,
Hanai
J
.
TGF-Β signaling and the epithelial-mesenchymal transition during palatal fusion
.
Int J Mol Sci
.
2018
;
19
(
11
):
3638
.
2.
Ferguson
MWJ
.
Palate development
.
Development
.
1988
;
103
(
Suppl l
):
41
60
.
3.
Iwata
J
,
Parada
C
,
Chai
Y
.
The mechanism of TGF-β signaling during palate development
.
Oral Dis
.
2011
;
17
(
8
):
733
44
.
4.
Iwata
J
,
Suzuki
A
,
Yokota
T
,
Ho
TV
,
Pelikan
R
,
Urata
M
, et al
.
TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate
.
Development
.
2014
;
141
(
4
):
909
17
.
5.
Sanford
LP
,
Ormsby
I
,
Gittenberger-de Groot
AC
,
Sariola
H
,
Friedman
R
,
Boivin
GP
, et al
.
TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes
.
Development
.
1997
;
124
(
13
):
2659
70
.
6.
Kaartinen
V
,
Voncken
JW
,
Shuler
C
,
Warburton
D
,
Bu
D
,
Heisterkamp
N
, et al
.
Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction
.
Nat Genet
.
1995
;
11
(
4
):
415
21
.
7.
Proetzel
G
,
Pawlowski
SA
,
Wiles
MV
,
Yin
M
,
Boivin
GP
,
Howles
P
, et al
.
Transforming growth factor-beta 3 is required for secondary palate fusion
.
Nat Genet
.
1995
;
11
(
4
):
409
14
.
8.
Liu
J
,
Chanumolu
SK
,
White
KM
,
Albahrani
M
,
Otu
HH
,
Nawshad
A
.
Transcriptional analysis of cleft palate in TGFβ3 mutant mice
.
Sci Rep
.
2020
;
10
(
1
):
14940
.
9.
Kaartinen
V
,
Cui
XM
,
Heisterkamp
N
,
Groffen
J
,
Shuler
CF
.
Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane
.
Dev Dyn
.
1997
;
209
(
3
):
255
60
.
10.
Laverty
HG
,
Wakefield
LM
,
Occleston
NL
,
O’Kane
S
,
Ferguson
MW
.
TGF-beta3 and cancer: a review
.
Cytokine Growth Factor Rev
.
2009
;
20
(
4
):
305
17
.
11.
Kulkarni
AB
,
Ward
JM
,
Yaswen
L
,
Mackall
CL
,
Bauer
SR
,
Huh
CG
, et al
.
Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders
.
Am J Pathol
.
1995
;
146
(
1
):
264
75
.
12.
De Crescenzo
G
,
Hinck
CS
,
Shu
Z
,
Zuniga
J
,
Yang
J
,
Tang
Y
, et al
.
Three key residues underlie the differential affinity of the TGFbeta isoforms for the TGFbeta type II receptor
.
J Mol Biol
.
2006
;
355
(
1
):
47
62
.
13.
Nakajima
A
,
Ito
Y
,
Asano
M
,
Maeno
M
,
Iwata
K
,
Mitsui
N
, et al
.
Functional role of transforming growth factor-beta type III receptor during palatal fusion
.
Dev Dyn
.
2007
;
236
(
3
):
791
801
.
14.
Nakajima
A
,
Ito
Y
,
Tanaka
E
,
Sano
R
,
Karasawa
Y
,
Maeno
M
, et al
.
Functional role of TGF-β receptors during palatal fusion in vitro
.
Arch Oral Biol
.
2014
;
59
(
11
):
1192
204
.
15.
Suzuki
Y
,
Nakajima
A
,
Kawato
T
,
Iwata
K
,
Motoyoshi
M
,
Shuler
CF
.
Identification of Smad-dependent and -independent signaling with transforming growth factor-β type 1/2 receptor inhibition in palatogenesis
.
J Oral Biol Craniofac Res
.
2020
;
10
(
2
):
43
8
.
16.
Greenburg
G
,
Hay
ED
.
Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells
.
J Cel Biol
.
1982
;
95
(
1
):
333
9
.
17.
Chai
Y
,
Maxson
RE
.
Recent advances in craniofacial morphogenesis
.
Dev Dyn
.
2006
;
235
(
9
):
2353
75
.
18.
Satokata
I
,
Maas
R
.
Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development
.
Nat Genet
.
1994
;
6
(
4
):
348
56
.
19.
Valcourt
U
,
Kowanetz
M
,
Niimi
H
,
Heldin
CH
,
Moustakas
A
.
TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition
.
Mol Biol Cel
.
2005
;
16
(
4
):
1987
2002
.
20.
Funato
N
,
Nakamura
M
,
Richardson
JA
,
Srivastava
D
,
Yanagisawa
H
.
Tbx1 regulates oral epithelial adhesion and palatal development
.
Hum Mol Genet
.
2012
;
21
(
11
):
2524
37
.
21.
Goudy
S
,
Law
A
,
Sanchez
G
,
Baldwin
HS
,
Brown
C
.
Tbx1 is necessary for palatal elongation and elevation
.
Mech Dev
.
2010
;
127
(
5–6
):
292
300
.
22.
Zoupa
M
,
Seppala
M
,
Mitsiadis
T
,
Cobourne
MT
.
Tbx1 is expressed at multiple sites of epithelial-mesenchymal interaction during early development of the facial complex
.
Int J Dev Biol
.
2006
;
50
(
5
):
504
10
.
23.
Murray
JC
,
Schutte
BC
.
Cleft palate: players, pathways, and pursuits
.
J Clin Investig
.
2004
;
113
(
12
):
1676
8
.
24.
Shiomi
N
,
Cui
XM
,
Yamamoto
T
,
Saito
T
,
Shuler
CF
.
Inhibition of SMAD2 expression prevents murine palatal fusion
.
Dev Dyn
.
2006
;
235
(
7
):
1785
93
.
25.
Nakajima
A
,
Tanaka
E
,
Ito
Y
,
Maeno
M
,
Iwata
K
,
Shimizu
N
, et al
.
The expression of TGF-β3 for epithelial-mesenchyme transdifferentiated MEE in palatogenesis
.
J Mol Histol
.
2010
;
41
(
6
):
343
55
.
26.
Yu
W
,
Ruest
LB
,
Svoboda
KKH
.
Regulation of epithelial-mesenchymal transition in palatal fusion
.
Exp Biol Med
.
2009
;
234
(
5
):
483
91
.
27.
Hata
A
,
Chen
YG
.
TGF-Β signaling from receptors to smads
.
Cold Spring Harb Perspect Biol
.
2016
;
8
(
9
):
a022061
.
28.
Gatza
CE
,
Oh
SY
,
Blobe
GC
.
Roles for the type III TGF-beta receptor in human cancer
.
Cell Signal
.
2010
;
22
(
8
):
1163
74
.
29.
Cui
XM
,
Shiomi
N
,
Chen
J
,
Saito
T
,
Yamamoto
T
,
Ito
Y
, et al
.
Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate
.
Dev Biol
.
2005
;
278
(
1
):
193
202
.
30.
Parada
C
,
Li
J
,
Iwata
J
,
Suzuki
A
,
Chai
Y
.
CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development
.
Mol Cel Biol
.
2013
;
33
(
17
):
3482
93
.
31.
Derynck
R
,
Zhang
YE
.
Smad-dependent and Smad-independent pathways in TGF-beta family signalling
.
Nature
.
2003
;
425
(
6958
):
577
84
.
32.
Levi
G
,
Mantero
S
,
Barbieri
O
,
Cantatore
D
,
Paleari
L
,
Beverdam
A
, et al
.
Msx1 and Dlx5 act independently in development of craniofacial skeleton, but converge on the regulation of Bmp signaling in palate formation
.
Mech Dev
.
2006
;
123
(
1
):
3
16
.
33.
Nakatomi
M
,
Wang
XP
,
Key
D
,
Lund
JJ
,
Turbe-Doan
A
,
Kist
R
, et al
.
Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis
.
Dev Biol
.
2010
;
340
(
2
):
438
49
.
34.
Zhang
Z
,
Song
Y
,
Zhao
X
,
Zhang
X
,
Fermin
C
,
Chen
Y
.
Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis
.
Development
.
2002
;
129
(
17
):
4135
46
.
35.
Liu
W
,
Sun
X
,
Braut
A
,
Mishina
Y
,
Behringer
RR
,
Mina
M
, et al
.
Distinct functions for Bmp signaling in lip and palate fusion in mice
.
Development
.
2005
;
132
(
6
):
1453
61
.
36.
Yuan
G
,
Zhan
Y
,
Gou
X
,
Chen
Y
,
Yang
G
.
TGF-β signaling inhibits canonical BMP signaling pathway during palate development
.
Cell Tissue Res
.
2018
;
371
(
2
):
283
91
.
37.
Ohki
S
,
Oka
K
,
Ogata
K
,
Okuhara
S
,
Rikitake
M
,
Toda-Nakamura
M
, et al
.
Transforming growth factor-beta and sonic hedgehog signaling in palatal epithelium regulate tenascin-C expression in palatal mesenchyme during soft palate development
.
Front Physiol
.
2020
;
11
:
532
.
38.
Blavier
L
,
Lazaryev
A
,
Groffen
J
,
Heisterkamp
N
,
DeClerck
YA
,
Kaartinen
V
.
TGF-beta3-induced palatogenesis requires matrix metalloproteinases
.
Mol Biol Cel
.
2001
;
12
(
5
):
1457
66
.
39.
Brown
NL
,
Yarram
SJ
,
Mansell
JP
,
Sandy
JR
.
Matrix metalloproteinases have a role in palatogenesis
.
J Dent Res
.
2002
;
81
(
12
):
826
30
.
You do not currently have access to this content.