Introduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes. In this study, we examined how KDM6B influences chondrogenic differentiation in SCAPs and investigated the underlying mechanisms involved. Methods: SCAPs were utilized. Alcian blue staining, pellet culture, and cell transplantation in rabbit knee cartilage defect models assessed MSC chondrogenic differentiation. Western blot, real-time RT-PCR, and microarray analysis examined the underlying molecular mechanisms. Results: KDM6B promotes the expression of aggrecan, COL2A1, COL5, glycosaminoglycans, and collagen fibers, while also increasing the COL2/COL1 ratio in SCAPs. In vivo, SCAPs overexpressing KDM6B significantly enhanced the repair and regeneration of knee cartilage and subchondral bone, with higher levels of glycosaminoglycan and COL2 expression observed within the tissue. KDM6B promotes the chondrogenic differentiation potential of SCAPs by repressing HES1. In addition, knockdown of HES1 enhanced the chondrogenic differentiation of SCAPs. Conclusions: KDM6B enhances the differentiation of SCAPs into chondrocytes and demonstrated its effectiveness in the repair and regeneration of cartilage tissue and subchondral bone in vivo experiments. These findings provide an important foundation for future research on the use of dental tissue-derived stem cells to treat cartilage injuries.

1.
Goldring
MB
,
Marcu
KB
.
Cartilage homeostasis in health and rheumatic diseases
.
Arthritis Res Ther
.
2009
;
11
(
3
):
224
.
2.
O'Sullivan
J
,
D’Arcy
S
,
Barry
FP
,
Murphy
JM
,
Coleman
CM
.
Mesenchymal chondroprogenitor cell origin and therapeutic potential
.
Stem Cell Res Ther
.
2011
;
2
(
1
):
8
.
3.
Martel-Pelletier
J
,
Barr
AJ
,
Cicuttini
FM
,
Conaghan
PG
,
Cooper
C
,
Goldring
MB
, et al
.
Osteoarthritis
.
Nat Rev Dis Primers
.
2016
;
2
:
16072
.
4.
Vina
ER
,
Kwoh
CK
.
Epidemiology of osteoarthritis: literature update
.
Curr Opin Rheumatol
.
2018
;
30
(
2
):
160
7
.
5.
Palazzo
C
,
Nguyen
C
,
Lefevre-Colau
MM
,
Rannou
F
,
Poiraudeau
S
.
Risk factors and burden of osteoarthritis
.
Ann Phys Rehabil Med
.
2016
;
59
(
3
):
134
8
.
6.
Glyn-Jones
S
,
Palmer
AJR
,
Agricola
R
,
Price
AJ
,
Vincent
TL
,
Weinans
H
, et al
.
Osteoarthritis
.
Lancet
.
2015
;
386
(
9991
):
376
87
.
7.
Lee
WY
,
Wang
B
.
Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives
.
J Orthop Translat
.
2017
;
9
:
76
88
.
8.
Colombini
A
,
Perucca Orfei
C
,
Kouroupis
D
,
Ragni
E
,
De Luca
P
,
ViganÒ
M
, et al
.
Mesenchymal stem cells in the treatment of articular cartilage degeneration: new biological insights for an old-timer cell
.
Cytotherapy
.
2019
;
21
(
12
):
1179
97
.
9.
Sharpe
PT
.
Dental mesenchymal stem cells
.
Development
.
2016
;
143
(
13
):
2273
80
.
10.
Huang
GT
,
Gronthos
S
,
Shi
S
.
Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine
.
J Dent Res
.
2009
;
88
(
9
):
792
806
.
11.
Bakopoulou
A
,
Apatzidou
D
,
Aggelidou
E
,
Gousopoulou
E
,
Leyhausen
G
,
Volk
J
, et al
.
Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties
.
Stem Cell Res Ther
.
2017
;
8
(
1
):
247
.
12.
Liu
J
,
Yu
F
,
Sun
Y
,
Jiang
B
,
Zhang
W
,
Yang
J
, et al
.
Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells
.
Stem Cell
.
2015
;
33
(
3
):
627
38
.
13.
Ye
L
,
Fan
Z
,
Yu
B
,
Chang
J
,
Al Hezaimi
K
,
Zhou
X
, et al
.
Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs
.
Cell Stem Cell
.
2012
;
11
(
1
):
50
61
.
14.
Zhang
F
,
Xu
L
,
Xu
L
,
Xu
Q
,
Li
D
,
Yang
Y
, et al
.
JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice
.
J Mol Cell Biol
.
2015
;
7
(
1
):
23
34
.
15.
Yapp
C
,
Carr
AJ
,
Price
A
,
Oppermann
U
,
Snelling
SJ
.
H3K27me3 demethylases regulate in vitro chondrogenesis and chondrocyte activity in osteoarthritis
.
Arthritis Res Ther
.
2016
;
18
(
1
):
158
.
16.
Dai
J
,
Yu
D
,
Wang
Y
,
Chen
Y
,
Sun
H
,
Zhang
X
, et al
.
Kdm6b regulates cartilage development and homeostasis through anabolic metabolism
.
Ann Rheum Dis
.
2017
;
76
(
7
):
1295
303
.
17.
Zhang
C
,
Ye
W
,
Zhao
M
,
Long
L
,
Xia
D
,
Fan
Z
.
MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1
.
Int J Oral Sci
.
2023
;
15
(
1
):
48
.
18.
Zhang
C
,
Ye
W
,
Zhao
M
,
Long
L
,
Xia
D
,
Fan
Z
.
KDM6B negatively regulates the neurogenesis potential of apical papilla stem cells via HES1
.
Int J Mol Sci
.
2023
;
24
(
13
):
10608
.
19.
Cao
Z
,
Wang
H
,
Chen
J
,
Zhang
Y
,
Mo
Q
,
Zhang
P
, et al
.
Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration
.
Bioact Mater
.
2023
;
20
:
221
42
.
20.
Li
P
,
Fu
L
,
Liao
Z
,
Peng
Y
,
Ning
C
,
Gao
C
, et al
.
Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment
.
Biomaterials
.
2021
;
278
:
121131
.
21.
Hoemann
C
,
Kandel
R
,
Roberts
S
,
Saris
DB
,
Creemers
L
,
Mainil-Varlet
P
, et al
.
International cartilage repair society (ICRS) recommended guidelines for histological endpoints for cartilage repair studies in animal models and clinical trials
.
Cartilage
.
2011
;
2
(
2
):
153
72
.
22.
Veronesi
F
,
Cadossi
M
,
Giavaresi
G
,
Martini
L
,
Setti
S
,
Buda
R
, et al
.
Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study
.
BMC Musculoskelet Disord
.
2015
;
16
:
233
.
23.
Zhao
X
,
Shah
D
,
Gandhi
K
,
Wei
W
,
Dwibedi
N
,
Webster
L
, et al
.
Clinical, humanistic, and economic burden of osteoarthritis among noninstitutionalized adults in the United States
.
Osteoarthritis Cartilage
.
2019
;
27
(
11
):
1618
26
.
24.
Otsuki
S
,
Grogan
SP
,
Miyaki
S
,
Kinoshita
M
,
Asahara
H
,
Lotz
MK
.
Tissue neogenesis and STRO-1 expression in immature and mature articular cartilage
.
J Orthop Res
.
2010
;
28
(
1
):
96
102
.
25.
Murphy
MP
,
Koepke
LS
,
Lopez
MT
,
Tong
X
,
Ambrosi
TH
,
Gulati
GS
, et al
.
Articular cartilage regeneration by activated skeletal stem cells
.
Nat Med
.
2020
;
26
(
10
):
1583
92
.
26.
Wang
L
,
Huang
J
,
Huang
C
,
Li
Q
,
Liu
L
,
Luo
S
, et al
.
Adult stem cells and hydrogels for cartilage regeneration
.
Curr Stem Cell Res Ther
.
2018
;
13
(
7
):
533
46
.
27.
Park
YB
,
Ha
CW
,
Rhim
JH
,
Lee
HJ
.
Stem cell therapy for articular cartilage repair: review of the entity of cell populations used and the result of the clinical application of each entity
.
Am J Sports Med
.
2018
;
46
(
10
):
2540
52
.
28.
Yang
H
,
Cao
Y
,
Zhang
J
,
Liang
Y
,
Su
X
,
Zhang
C
, et al
.
DLX5 and HOXC8 enhance the chondrogenic differentiation potential of stem cells from apical papilla via LINC01013
.
Stem Cell Res Ther
.
2020
;
11
(
1
):
271
.
29.
Chen
Z
,
Zhou
T
,
Luo
H
,
Wang
Z
,
Wang
Q
,
Shi
R
, et al
.
HWJMSC-EVs promote cartilage regeneration and repair via the ITGB1/TGF-β/Smad2/3 axis mediated by microfractures
.
J Nanobiotechnology
.
2024
;
22
(
1
):
177
.
30.
Linkova
N
,
Khavinson
V
,
Diatlova
A
,
Myakisheva
S
,
Ryzhak
G
.
Peptide regulation of chondrogenic stem cell differentiation
.
Int J Mol Sci
.
2023
;
24
(
9
):
8415
.
31.
Miao
C
,
Mu
S
,
Duan
P
,
Liang
X
,
Yang
B
,
Zhou
G
, et al
.
Effects of chondrogenic microenvironment on construction of cartilage tissues using marrow stromal cells in vitro
.
Artif Cells Blood Substit Immobil Biotechnol
.
2009
;
37
(
5
):
214
21
.
32.
Ricard-Blum
S
.
The collagen family
.
Cold Spring Harb Perspect Biol
.
2011
;
3
(
1
):
a004978
.
33.
Alizadeh Sardroud
H
,
Wanlin
T
,
Chen
X
,
Eames
BF
.
Cartilage tissue engineering approaches need to assess fibrocartilage when hydrogel constructs are mechanically loaded
.
Front Bioeng Biotechnol
.
2021
;
9
:
787538
.
34.
Dehne
T
,
Schenk
R
,
Perka
C
,
Morawietz
L
,
Pruss
A
,
Sittinger
M
, et al
.
Gene expression profiling of primary human articular chondrocytes in high-density micromasses reveals patterns of recovery, maintenance, re- and dedifferentiation
.
Gene
.
2010
;
462
(
1–2
):
8
17
.
35.
Ravera
F
,
Efeoglu
E
,
Byrne
HJ
.
Monitoring stem cell differentiation using Raman microspectroscopy: chondrogenic differentiation, towards cartilage formation
.
Analyst
.
2021
;
146
(
1
):
322
37
.
36.
Shoulders
MD
,
Raines
RT
.
Collagen structure and stability
.
Annu Rev Biochem
.
2009
;
78
:
929
58
.
37.
Brezillon
S
,
Untereiner
V
,
Mohamed
HT
,
Hodin
J
,
Chatron-Colliet
A
,
Maquart
FX
, et al
.
Probing glycosaminoglycan spectral signatures in live cells and their conditioned media by Raman microspectroscopy
.
Analyst
.
2017
;
142
(
8
):
1333
41
.
38.
Li
Q
,
Yu
H
,
Zhao
F
,
Cao
C
,
Wu
T
,
Fan
Y
, et al
.
3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration
.
Adv Sci
.
2023
;
10
(
26
):
e2303650
.
39.
Grogan
SP
,
Olee
T
,
Hiraoka
K
,
Lotz
MK
.
Repression of chondrogenesis through binding of notch signaling proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer site
.
Arthritis Rheum
.
2008
;
58
(
9
):
2754
63
.
40.
Karlsson
C
,
Brantsing
C
,
Svensson
T
,
Brisby
H
,
Asp
J
,
Tallheden
T
, et al
.
Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors
.
J Orthop Res
.
2007
;
25
(
2
):
152
63
.
41.
Sun
J
,
Luo
Z
,
Wang
G
,
Wang
Y
,
Wang
Y
,
Olmedo
M
, et al
.
Notch ligand Jagged1 promotes mesenchymal stromal cell-based cartilage repair
.
Exp Mol Med
.
2018
;
50
(
9
):
1
10
.
You do not currently have access to this content.