Introduction: The detection of chemical signals by the vomeronasal organ (VNO) is critical for mammals from an early age, influencing behaviors such as suckling and recognition of the mother. Located at the base of the nasal cavity, the VNO features a duct covered with a sensory epithelium. A critical aspect of VNO functionality is the efficient access of stimuli from the nasal and oral cavities to the receptors. In adult dogs, it has been demonstrated how the vomeronasal duct (VD) communicates to the environment through the incisive duct (ID). In newborn puppies, the existence of functional communication between the ID and the VD has not been confirmed to date, raising doubts about the potential physiological obliteration of the ID. Determining this aspect is necessary to evaluate the role played by chemocommunication in the survival and socialization of puppies. Methods: This study employs serial histological staining to examine the presence and functionality of the ID in neonatal dogs. Additionally, a histochemical study was conducted using periodic acid-Schiff and Alcian Blue staining, along with labeling with six lectins to characterize the expression of glycoconjugates in the incisive papilla and in the area between the ID and the VD. Results: The histological study has confirmed both the existence of functional communication between both ducts in perinatal puppies and the dual functional communication of the ID with the oral and nasal cavities. Lectin labeling has allowed for the characterization of the glycoconjugate expression profile in the papilla and ID, showing significant differences between lectins. Conclusion: The ID is associated with a sophisticated cartilaginous complex that prevents its collapse, as well as erectile tissue that acts as a cushion, facilitating its action under pressure induced by sampling behaviors such as tonguing. This investigation demonstrates the communicative capabilities of the VNO during the perinatal stage in dogs.

This study examined how newborn puppies use a special structure, the vomeronasal organ (VNO), to detect chemical signals that help them recognize their mother and locate milk. The VNO has a duct connected to the outside through another passage, the incisive duct (ID). While this connection is known in adult dogs, it had not been confirmed in newborns, raising questions about its role in early life. Through detailed tissue analysis, researchers confirmed the presence of this connection in puppies, allowing access to chemical cues from both the nose and mouth. The ID contains structures that keep it open and responsive, along with specific chemicals in the area that may help puppies recognize scents. These findings support the importance of an active VNO for survival and social behavior from birth.

1.
Pérez-Gómez
A
,
Bleymehl
K
,
Stein
B
,
Pyrski
M
,
Birnbaumer
L
,
Munger
SD
, et al
.
Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus
.
Curr Biol
.
2015
;
25
(
10
):
1340
6
.
2.
Navarro-Moreno
C
,
Sanchez-Catalan
MJ
,
Barneo-Muñoz
M
,
Goterris-Cerisuelo
R
,
Belles
M
,
Lanuza
E
, et al
.
Pregnancy changes the response of the vomeronasal and olfactory systems to pups in mice
.
Front Cell Neurosci
.
2020
;
14
:
593309
.
3.
Tommasi
A
,
Koziel
JA
,
Molotsi
AH
,
Esposito
G
.
Understanding the role of semiochemicals on the reproductive behaviour of cheetahs (acinonyx jubatus): a review
.
Animals
.
2021
;
11
(
11
):
3140
.
4.
Burghardt
GM
.
Animal awareness: current perceptions and historical perspective
.
Am Psychol
.
1985
;
40
(
8
):
905
19
.
5.
Brookes
JC
.
Science is perception: what can our sense of smell tell us about ourselves and the world around us? Philos Transact A
.
Math Phys Eng Sci
.
2010
;
368
(
1924
):
3491
502
.
6.
Barrios
AW
,
Sanchez Quinteiro
P
,
Salazar
I
.
The nasal cavity of the sheep and its olfactory sensory epithelium
.
Microsc Res Tech
.
2014
;
77
(
12
):
1052
9
.
7.
Smith
TD
,
Bhatnagar
KP
.
Anatomy of the olfactory system
.
Handbook of clinical neurology
.
Elsevier
;
2019
; p.
17
28
.
8.
Sbarbati
A
,
Osculati
F
.
Allelochemical communication in vertebrates: kairomones, allomones and synomones
.
Cells Tissues Organs
.
2006
;
183
(
4
):
206
19
.
9.
Bakker
J
,
Leinders-Zufall
T
.
The sense of smell: role of the olfactory systems in detecting pheromones
. In:
Pfaff
DW
,
Volkow
ND
, editors.
Neuroscience in the 21st century: from basic to clinical
.
New York, NY
:
Springer
;
2016
. p.
935
60
.
10.
Fortes-Marco
L
,
Lanuza
E
,
Martinez-Garcia
F
.
Of pheromones and kairomones: what receptors mediate innate emotional responses? pheromones and kairomones
.
Anat Rec
.
2013
;
296
(
9
):
1346
63
.
11.
Wyatt
TD
.
Pheromones and animal behavior: chemical signals and signatures
. 2nd ed.
Cambridge
:
Cambridge University Press
;
2013
.
12.
Salazar
I
,
Barrios
AW
,
Sánchez-Quinteiro
P
.
Revisiting the vomeronasal system from an integrated perspective
.
Anat Rec
.
2016
;
299
(
11
):
1488
91
.
13.
Dennis
JC
,
Stilwell
NK
,
Smith
TD
,
Park
TJ
,
Bhatnagar
KP
,
Morrison
EE
.
Is the mole rat vomeronasal organ functional
.
Anat Rec
.
2020
;
303
(
2
):
318
29
.
14.
Hong
S
,
Ahn
M
,
Moon
C
,
Ortiz-Leal
I
,
Sanchez-Quinteiro
P
,
Kang
T
, et al
.
Histological evaluation of the alpaca (Vicugna pacos) vomeronasal organ
.
J Vet Med Sci
.
2024
;
86
(
5
):
458
62
.
15.
McCotter
RE
.
The connection of the vomeronasal nerves with the accessory olfactory bulb in the opossum and other mammals
.
Anat Rec
.
1912
;
6
(
8
):
299
318
.
16.
Larriva-Sahd
J
.
The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system
.
J Comp Neurol
.
2008
;
510
(
3
):
309
50
.
17.
Ortiz-Leal
I
,
Torres
MV
,
Villamayor
PR
,
Fidalgo
LE
,
López-Beceiro
A
,
Sanchez-Quinteiro
P
.
Can domestication shape Canidae brain morphology? The accessory olfactory bulb of the red fox as a case in point
.
Ann Anat Anat Anz
.
2022
;
240
:
151881
.
18.
Gutiérrez-Castellanos
N
,
Pardo-Bellver
C
,
Martínez-García
F
,
Lanuza
E
.
The vomeronasal cortex: afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice
.
Eur J Neurosci
.
2014
;
39
(
1
):
141
58
.
19.
Równiak
M
,
Bogus-Nowakowska
K
,
Kalinowski
D
,
Kozłowska
A
.
The evolutionary trajectories of the individual amygdala nuclei in the common shrew, Guinea pig, rabbit, fox and pig: a consequence of embryological fate and mosaic-like evolution
.
J Anat
.
2022
;
240
(
3
):
489
502
.
20.
Torres
MV
,
Ortiz-Leal
I
,
Villamayor
PR
,
Ferreiro
A
,
Rois
JL
,
Sanchez-Quinteiro
P
.
Does a third intermediate model for the vomeronasal processing of information exist? Insights from the macropodid neuroanatomy
.
Brain Struct Funct
.
2022
;
227
(
3
):
881
99
.
21.
Salazar
I
,
Sánchez Quinteiro
P
,
Cifuentes
JM
,
Fernández
P
,
Lombardero
M
.
Distribution of the arterial supply to the vomeronasal organ in the cat
.
Anat Rec
.
1997
;
247
(
1
):
129
36
.
22.
Meredith
M
,
O’Connell
RJ
.
Efferent control of stimulus access to the hamster vomeronasal organ
.
J Physiol
.
1979
;
286
(
1
):
301
16
.
23.
Lippner
DS
,
Xu
J
,
Ma
S
,
Reisert
J
,
Zhao
H
.
Phosphodiesterase 5A regulates the vomeronasal pump in mice
.
Genesis
.
2024
;
62
(
3
):
e23603
.
24.
Hamacher
C
,
Degen
R
,
Franke
M
,
Switacz
VK
,
Fleck
D
,
Katreddi
RR
, et al
.
A revised conceptual framework for mouse vomeronasal pumping and stimulus sampling
.
Curr Biol
.
2024
:
S0960982224000344
.
25.
Salazar
I
,
Cifuentes
JM
,
Sánchez-Quinteiro
P
.
Morphological and immunohistochemical features of the vomeronasal system in dogs
.
Anat Rec
.
2013
;
296
(
1
):
146
55
.
26.
Ortiz-Leal
I
,
Torres
MV
,
Barreiro-Vázquez
J
,
López-Beceiro
A
,
Fidalgo
L
,
Shin
T
, et al
.
The vomeronasal system of the wolf (Canis lupus signatus): the singularities of a wild canid
.
J Anat
.
2024
;
245
(
1
):
109
36
.
27.
Smith
TD
,
Garrett
EC
,
Bhatnagar
KP
,
Bonar
CJ
,
Bruening
AE
,
Dennis
JC
, et al
.
The vomeronasal organ of new world monkeys (platyrrhini)
.
Anat Rec
.
2011
;
294
(
12
):
2158
78
.
28.
Poran
NS
.
Vomeronasal organ and its associated structures in the opossum Monodelphis domestica
.
Microsc Res Tech
.
1998
;
43
(
6
):
500
10
.
29.
Kondoh
D
,
Tanaka
Y
,
Kawai
YK
,
Mineshige
T
,
Watanabe
K
,
Kobayashi
Y
.
Morphological and histological features of the vomeronasal organ in African pygmy hedgehog (Atelerix albiventris)
.
Animals
.
2021
;
11
(
5
):
1462
.
30.
Tomiyasu
J
,
Kondoh
D
,
Sakamoto
H
,
Matsumoto
N
,
Sasaki
M
,
Kitamura
N
, et al
.
Morphological and histological features of the vomeronasal organ in the brown bear
.
J Anat
.
2017
;
231
(
5
):
749
57
.
31.
Luckhaus
G
.
Light and electron microscopic findings in the epithelial lamina of the vomeronasal organ of the rabbit
.
Anat Anz
.
1969
;
124
(
5
):
477
89
.
32.
Tomiyasu
J
,
Korzekwa
A
,
Kawai
YK
,
Robstad
CA
,
Rosell
F
,
Kondoh
D
.
The vomeronasal system in semiaquatic beavers
.
J Anat
.
2022
;
241
(
3
):
809
19
.
33.
Adams
DR
,
Wiekamp
MD
.
The canine vomeronasal organ
.
J Anat
.
1984
;
138 (Pt 4)
(
Pt 4
):
771
87
.
34.
Jezierski
T
,
Ensminger
J
,
Papet
LE
.
Canine olfaction science and law: advances in forensic science, medicine
.
S.l: CRC Press
;
2016
.
35.
Dzięcioł
M
,
Podgórski
P
,
Stańczyk
E
,
Szumny
A
,
Woszczyło
M
,
Pieczewska
B
, et al
.
MRI features of the vomeronasal organ in dogs (Canis familiaris)
.
Front Vet Sci
.
2020
;
7
:
159
.
36.
Owings
DH
.
The cognitive defender: how ground squirrels assess their predators
. In:
Bekoff
M
,
Allen
C
,
Burghardt
GM
, editors.
The cognitive animal: empirical and theoretical perspectives on animal cognition
.
MIT Press
;
2002
. p.
19
26
.
37.
Galef
BG
.
The ecology of weaning
. In:
Gubernick
DJ
,
Klopfer
PH
, editors.
Parental care in mammals
.
Boston, MA
:
Springer US
;
1981
. p.
211
41
.
38.
Halpern
M
,
Martínez-Marcos
A
.
Structure and function of the vomeronasal system: an update
.
Prog Neurobiol
.
2003
;
70
(
3
):
245
318
.
39.
Augustine
S
,
Lika
K
,
Kooijman
SALM
.
Altricial-precocial spectra in animal kingdom
.
J Sea Res
.
2019
;
143
:
27
34
.
40.
Salazar
I
,
Lombardero
M
,
Alemañ
N
,
Sánchez Quinteiro
P
.
Development of the vomeronasal receptor epithelium and the accessory olfactory bulb in sheep
.
Microsc Res Tech
.
2003
;
61
(
5
):
438
47
.
41.
Salazar
I
,
Lombardero
M
,
Cifuentes
JM
,
Sánchez Quinteiro
P
,
Aleman
N
.
Morphogenesis and growth of the soft tissue and cartilage of the vomeronasal organ in pigs
.
J Anat
.
2003
;
202
(
6
):
503
14
.
42.
Scheiber
IBR
,
Weiß
BM
,
Kingma
SA
,
Komdeur
J
.
The importance of the altricial: precocial spectrum for social complexity in mammals and birds – a review
.
Front Zool
.
2017
;
14
(
1
):
3
.
43.
Wöhrmann-Repenning
A
.
Zur embryonalen und frühen postnatalen Entwicklung des Jacobsonschen Organs in Beziehung zum Ductus nasopalatinus bei der Ratte
.
Zool Anz Jena
.
206
;
203
14
.
44.
Leon
M
,
Coopersmith
R
,
Ulibarri
C
,
Porter
RH
,
Powers
JB
.
Development of olfactory bulb organization in precocial and altricial rodents
.
Brain Res
.
1984
;
314
(
1
):
45
53
.
45.
Wöhrmann-Repenning
A
.
Functional aspects of the vomeronasal complex in mammals
.
Zool Jahrb Anat
.
1991
;
121
:
71
80
.
46.
Saânchez-Villagra
M
.
Ontogenetic and phylogenetic transformations of the vomeronasal complex and nasal floor elements in marsupial mammals
.
Zool J Linn Soc
.
2001
;
131
(
4
):
459
79
.
47.
Schneider
NY
.
The development of the olfactory organs in newly hatched monotremes and neonate marsupials: olfaction in monotremes and marsupials
.
J Anat
.
2011
;
219
(
2
):
229
42
.
48.
Lezama-García
K
,
Mariti
C
,
Mota-Rojas
D
,
Martínez-Burnes
J
,
Barrios-García
H
,
Gazzano
A
.
Maternal behaviour in domestic dogs
.
Int J Vet Sci Med
.
2019
;
7
(
1
):
20
30
.
49.
Root Kustritz
MV
.
Reproductive behavior of small animals
.
Theriogenology
.
2005
;
64
(
3
):
734
46
.
50.
Kokocińska-Kusiak
A
,
Woszczyło
M
,
Zybala
M
,
Maciocha
J
,
Barłowska
K
,
Dzięcioł
M
.
Canine olfaction: physiology, behavior, and possibilities for practical applications
.
Animals
.
2021
;
11
(
8
):
2463
.
51.
Pageat
P
,
Gaultier
E
.
Current research in canine and feline pheromones
.
Vet Clin North Am Small Anim Pract
.
2003
;
33
(
2
):
187
211
.
52.
Foyer
P
,
Bjällerhag
N
,
Wilsson
E
,
Jensen
P
.
Behaviour and experiences of dogs during the first year of life predict the outcome in a later temperament test
.
Appl Anim Behav Sci
.
2014
;
155
:
93
100
.
53.
Foyer
P
,
Wilsson
E
,
Jensen
P
.
Levels of maternal care in dogs affect adult offspring temperament
.
Sci Rep
.
2016
;
6
:
19253
.
54.
Hepper
PG
,
Wells
DL
.
Perinatal olfactory learning in the domestic dog
.
Chem Senses
.
2006
;
31
(
3
):
207
12
.
55.
Lévy
F
.
Neuroendocrine control of maternal behavior in non-human and human mammals
.
Ann Endocrinol
.
2016
;
77
(
2
):
114
25
.
56.
Meredith
M
.
Vomeronasal damage, not nasopalatine duct damage, produces mating behavior deficits in male hamsters
.
Chem Senses
.
1991
;
16
(
2
):
155
67
.
57.
Levy
DR
,
Sofer
Y
,
Brumfeld
V
,
Zilkha
N
,
Kimchi
T
.
The nasopalatine ducts are required for proper pheromone signaling in mice
.
Front Neurosci
.
2020
;
14
:
585323
.
58.
Poran
NS
,
Tripoli
R
,
Halpern
M
.
Nuzzling in the gray short-tailed opossum II: familiarity and individual recognition
.
Physiol Behav
.
1993
;
53
(
5
):
969
73
.
59.
Poran
NS
,
Vandoros
A
,
Halpern
M
.
Nuzzling in the gray short-tailed opossum. I: delivery of odors to vomeronasal organ
.
Physiol Behav
.
1993
;
53
(
5
):
959
67
.
60.
Booth
KK
,
Katz
LS
.
Role of the vomeronasal organ in neonatal offspring recognition in sheep
.
Biol Reprod
.
2000
;
63
(
3
):
953
8
.
61.
Jacobs
VL
,
Sis
RF
,
Chenoweth
PJ
,
Klemm
WR
,
Sherry
CJ
,
Coppock
CE
.
Tongue manipulation of the palate assists estrous detection in the bovine
.
Theriogenology
.
1980
;
13
(
5
):
353
6
.
62.
Jacobs
VL
,
Sis
RF
,
Chenoweth
PJ
,
Klemm
WR
,
Sherry
CJ
.
Structures of the bovine vomeronasal complex and its relationships to the palate: tongue manipulation
.
Acta Anat
.
1981
;
110
(
1
):
48
58
.
63.
Yohro
T
.
Structure and innervation of the papilla incisiva (papilla palatina) of the shrew, Sorex unguiculatus
.
Okajimas Folia Anat Jpn
.
1980
;
57
(
5
):
321
36
.
64.
Plendl
J
,
Sinowatz
F
.
Glycobiology of the olfactory system
.
Acta Anat
.
1998
;
161
(
1–4
):
234
53
.
65.
Chun
J
,
Kang
T
,
Seo
J-P
,
Jeong
H
,
Kim
M
,
Kim
BS
, et al
.
Glycoconjugate-specific developmental changes in the horse vomeronasal organ
.
Cells Tissues Organs
.
2024
;
213
(
2
):
147
60
.
66.
Liinamo
AE
,
Karjalainen
L
,
Ojala
M
,
Vilva
V
.
Estimates of genetic parameters and environmental effects for measures of hunting performance in Finnish hounds
.
J Anim Sci
.
1997
;
75
(
3
):
622
9
.
67.
Hart
B
,
Leedy
MG
.
Stimulus and hormonal determinants of flehmen behavior in cats
.
Horm Behav
.
1987
;
21
(
1
):
44
52
.
68.
Guiraudie
G
,
Pageat
P
,
Cain
AH
,
Madec
I
,
Nagnan-Le Meillour
P
.
Functional characterization of olfactory binding proteins for appeasing compounds and molecular cloning in the vomeronasal organ of pre-pubertal pigs
.
Chem Senses
.
2003
;
28
(
7
):
609
19
.
69.
Lee
SJ
,
Mammen
A
,
Kim
EJ
,
Kim
SY
,
Park
YJ
,
Park
M
, et al
.
The vomeronasal organ and adjacent glands express components of signaling cascades found in sensory neurons in the main olfactory system
.
Mol Cells
.
2008
;
26
(
5
):
503
13
.
70.
Brooks
SA
.
Lectin histochemistry: historical perspectives, state of the art, and future directions
. In:
Pellicciari
C
,
Biggiogera
M
,
Malatesta
M
, editors.
Histochemistry of single molecules
.
New York, NY
:
Springer US
;
2023
. p.
65
84
.
71.
Kondoh
D
,
Kamikawa
A
,
Sasaki
M
,
Kitamura
N
.
Localization of α1-2 fucose glycan in the mouse olfactory pathway
.
Cells Tissues Organs
.
2017
;
203
(
1
):
20
8
.
72.
Franceschini
V
,
Lazzari
M
,
Revoltella
RP
,
Ciani
F
.
Histochemical study by lectin binding of surface glycoconjugates in the developing olfactory system of rat
.
Int J Dev Neurosci
.
1994
;
12
(
3
):
197
206
.
73.
Keller
L-A
,
Niedermeier
S
,
Claassen
L
,
Popp
A
.
Comparative lectin histochemistry on the murine respiratory tract and primary olfactory pathway using a fully automated staining procedure
.
Acta Histochem
.
2022
;
124
(
3
):
151877
.
74.
Tomiyasu
J
,
Kondoh
D
,
Sakamoto
H
,
Matsumoto
N
,
Haneda
S
,
Matsui
M
.
Lectin histochemical studies on the olfactory gland and two types of gland in vomeronasal organ of the brown bear
.
Acta Histochem
.
2018
;
120
(
6
):
566
71
.
75.
Ichikawa
M
,
Osada
T
,
Ikai
A
.
Bandeiraea simplicifolia lectin I and Vicia villosa agglutinin bind specifically to the vomeronasal axons in the accessory olfactory bulb of the rat
.
Neurosci Res
.
1992
;
13
(
1
):
73
9
.
76.
Takami
S
,
Graziadei
PP
,
Ichikawa
M
.
The differential staining patterns of two lectins in the accessory olfactory bulb of the rat
.
Brain Res
.
1992
;
598
(
1–2
):
337
42
.
77.
Hofmann
MH
,
Meyer
DL
.
Functional subdivisions of the olfactory system correlate with lectin-binding properties in Xenopus
.
Brain Res
.
1991
;
564
(
2
):
344
7
.
78.
Lee
W
,
Ahn
M
,
Park
C
,
Taniguchi
K
,
Moon
C
,
Shin
T
.
Histochemical study of lectin-binding patterns in the rat vomeronasal organ during postnatal development
.
Korean J Vet Res
.
2012
;
52
(
1
):
1
8
.
79.
Yang
W
,
Choi
Y
,
Park
C
,
Lee
K-H
,
Ahn
M
,
Kang
W
, et al
.
Histological and lectin histochemical studies in the vomeronasal organ of the Korean black goat, Capra hircus coreanae
.
Acta Histochem
.
2021
;
123
(
2
):
151684
.
80.
Jang
S
,
Kim
B
,
Kim
J-S
,
Moon
C
.
Histology and lectin histochemistry in the vomeronasal organ of Korean native cattle, Bos taurus coreanae
.
J Anim Reprod Biotechnol
.
2021
;
36
(
4
):
270
84
.
81.
Lee
K-H
,
Park
C
,
Bang
H
,
Ahn
M
,
Moon
C
,
Kim
S
, et al
.
Histochemical study of the olfactory mucosae of the horse
.
Acta Histochem
.
2016
;
118
(
4
):
361
8
.
82.
Ogura
T
,
Krosnowski
K
,
Zhang
L
,
Bekkerman
M
,
Lin
W
.
Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells
.
PLoS One
.
2010
;
5
(
7
):
e11924
.
83.
Ibrahim
D
,
Abdel-Maksoud
F
,
Taniguchi
K
,
Yamamoto
Y
,
Taniguchi
K
,
Nakamuta
N
.
Immunohistochemical studies for the neuronal elements in the vomeronasal organ of the one-humped camel
.
J Vet Med Sci
.
2015
;
77
(
2
):
241
5
.
84.
Bray
EE
,
Gruen
ME
,
Gnanadesikan
GE
,
Horschler
DJ
,
Levy
KM
,
Kennedy
BS
, et al
.
Dog cognitive development: a longitudinal study across the first 2 years of life
.
Anim Cogn
.
2021
;
24
(
2
):
311
28
.
85.
De Paula Vieira
A
,
de Passillé
AM
,
Weary
DM
.
Effects of the early social environment on behavioral responses of dairy calves to novel events
.
J Dairy Sci
.
2012
;
95
(
9
):
5149
55
.
86.
von Arx
T
,
Schaffner
M
,
Bornstein
MM
.
Patent nasopalatine ducts: an update of the literature and a series of new cases
.
Surg Radiol Anat
.
2018
;
40
(
2
):
165
77
.
87.
Lake
S
,
Iwanaga
J
,
Kikuta
S
,
Oskouian
RJ
,
Loukas
M
,
Tubbs
RS
.
The incisive canal: a comprehensive review
.
Cureus
.
2018
;
10
(
7
):
e3069
.
88.
Todorovic
VS
,
Beetge
M-M
,
Kleyn
J
,
Hoffman
J
,
van Zyl
AW
.
Micro-XCT analysis of anatomical features and dimensions of the incisive canal: implications for dental implant treatment in the anterior maxilla
.
BMC Oral Health
.
2024
;
24
(
1
):
1244
.
89.
Solomon
EGR
,
Arunachalam
KS
.
The incisive papilla: a significant landmark in prosthodontics
.
J Indian Prosthodont Soc
.
2012
;
12
(
4
):
236
47
.
90.
Smith
TD
,
Bhatnagar
KP
,
Shimp
KL
,
Kinzinger
JH
,
Bonar
CJ
,
Burrows
AM
, et al
.
Histological definition of the vomeronasal organ in humans and chimpanzees, with a comparison to other primates
.
Anat Rec
.
2002
;
267
(
2
):
166
76
.
91.
Radlanski
RJ
,
Emmerich
S
,
Renz
H
.
Prenatal morphogenesis of the human incisive canal
.
Anat Embryol
.
2004
;
208
(
4
):
265
71
.
92.
Falci
SGM
,
Verli
FD
,
Consolaro
A
,
Santos
CR
.
Morphological characterization of the nasopalatine region in human fetuses and its association to pathologies
.
J Appl Oral Sci
.
2013
;
21
(
3
):
250
5
.
93.
Smith
TD
,
Laitman
JT
,
Bhatnagar
KP
.
The shrinking anthropoid nose, the human vomeronasal organ, and the language of anatomical reduction: the shrinking anthropoid nose
.
Anat Rec
.
2014
;
297
(
11
):
2196
204
.
94.
Ortmann
R
.
The sensory cells of the fetal vomeronasal organ in the human. A contribution to the variability of their differentiation and rudimentary development
.
HNO
.
1989
;
37
(
5
):
191
7
.
95.
Kjær
I
,
Fischer Hansen
B
.
The human vomeronasal organ: prenatal developmental stages and distribution of luteinizing hormone-releasing hormone
.
Eur J Oral Sci
.
1996
;
104
(
1
):
34
40
.
96.
Witt
M
,
Hummel
T
.
Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception
.
Int Rev Cytol
.
2006
;
248
:
209
59
.
97.
Schaal
B
,
Coureaud
G
,
Doucet
S
,
Delaunay-El Allam
M
,
Moncomble
A-S
,
Montigny
D
, et al
.
Mammary olfactory signalisation in females and odor processing in neonates: ways evolved by rabbits and humans
.
Behav Brain Res
.
2009
;
200
(
2
):
346
58
.
98.
Schaal
B
.
Mammary odor cues and pheromones: mammalian infant-directed communication about maternal state, mammae, and milk
.
Vitam Horm
.
2010
;
83
:
83
136
.
99.
Pellizzari
ED
,
Hartwell
TD
,
Harris
BS
,
Waddell
RD
,
Whitaker
DA
,
Erickson
MD
.
Purgeable organic compounds in mother’s milk
.
Bull Environ Contam Toxicol
.
1982
;
28
(
3
):
322
8
.
100.
Doucet
S
,
Soussignan
R
,
Sagot
P
,
Schaal
B
.
The secretion of areolar (Montgomery’s) glands from lactating women elicits selective, unconditional responses in neonates
.
PLoS One
.
2009
;
4
(
10
):
e7579
.
101.
Pageat
P
,
Lecuelle
C
,
Cozzi
A
.
Attachment-related pheromones in human: their effects on confidence during social interactions
.
Acta Neurobiol Exp
.
2014
;
74
(
3
). Available from: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-429cd6bf-ad09-476d-a5d9-3354640437fe
102.
Piccinni
A
,
Veltri
A
,
Marazziti
D
,
Mucci
F
,
Cozzi
A
,
Pageat
P
.
Human Appeasing Pheromone (HAP) influence on behavior and psychopathological residual symptoms of patients with complex psychiatric disorders
.
Clin Case Rep
.
2018
;
6
(
4
):
664
8
.
103.
Trotier
D
,
Eloit
C
,
Wassef
M
,
Talmain
G
,
Bensimon
JL
,
Døving
KB
, et al
.
The vomeronasal cavity in adult humans
.
Chem Senses
.
2000
;
25
(
4
):
369
80
.
104.
Kondoh
D
,
Tonomori
W
,
Iwasaki
R
,
Tomiyasu
J
,
Kaneoya
Y
,
Kawai
YK
, et al
.
The vomeronasal organ and incisive duct of harbor seals are modified to secrete acidic mucus into the nasal cavity
.
Sci Rep
.
2024
;
14
(
1
):
11779
.
105.
Sanmartín-Vázquez
E
,
Ortiz-Leal
I
,
Torres
MV
,
Kalak
P
,
Kubiak-Nowak
D
,
Dzięcioł
M
, et al
.
The incisive duct as a pathway for early vomeronasal communication in neonatal dogs
.
biorxiv
.
2024
;
2024
:
600254
.
You do not currently have access to this content.