Introduction: Maternal obesity has been positively correlated with an increased cardiometabolic risk in the offspring throughout life, implying intergenerational transmission. However, little is known about the early-life cardiac cell modifications that imply the onset of heart diseases later in life. This study analyzed cardiac progenitor cells and cardiomyocyte differentiation on day of birth in the offspring born to obese dams. Methods: The litter size reduction model was used to induce obesity in female Swiss mice. Both maternal groups, the Small Litter Dams (SLD-F1), which were overfed during lactation, and the Normal Litter Dams (NLD-F1), control group, were mated to healthy male mice. Their first-generation offspring (SLD-F2 and NLD-F2, n = 6 by group) were euthanized on birth. Results: Mothers from SLD had increased body mass, Lee Index, fat deposits, hyperglycemia, and glucose intolerance, confirming the obese phenotype. The offspring born from SLD-F1 had also increased body mass, Lee Index, and fasting hyperglycemia. The heart of SLD-F2 showed decreased cardiac mass/body mass ratio, increased cardiac collagen deposits, a greater number of undifferentiated cardiac c-kit+ and Sca-1+ progenitor cells, and increased NKX2.5+ cardiomyoblasts compared to control. In addition, SLD-F2 demonstrated immature cardiomyocytes. Conclusions: Obese dams negatively impact their offspring, leading to altered biometric and metabolic parameters, along with an immature heart already at birth, with extracellular matrix adverse remodeling, delayed cardiac progenitor cell differentiation, and restrained cardiomyocyte maturation, which can be related to the development of cardiometabolic disease in the adulthood.

1.
Tan
J
,
Zhang
Z
,
Yan
LL
,
Xu
X
.
The developmental origins of health and disease and intergenerational inheritance: a scoping review of multigenerational cohort studies
.
J Dev Orig Health Dis
.
2024
;
15
:
1
12
.
2.
Souza
LL
,
Moura
EG
,
Lisboa
PC
.
Litter size reduction as a model of overfeeding during lactation and its consequences for the development of metabolic diseases in the offspring
.
Nutrients
.
2022
;
14
(
10
):
2045
.
3.
Reed
J
,
Case
S
,
Rijhsinghani
A
.
Maternal obesity: perinatal implications
.
SAGE Open Med
.
2023
;
11
:
20503121231176128
.
4.
Godfrey
KM
,
Reynolds
RM
,
Prescott
SL
,
Nyirenda
M
,
Jaddoe
VW
,
Eriksson
JG
, et al
.
Influence of maternal obesity on the long-term health of offspring
.
Lancet Diabetes Endocrinol
.
2017
;
5
(
1
):
53
64
.
5.
Dong
M
,
Zheng
Q
,
Ford
SP
,
Nathanielsz
PW
,
Ren
J
.
Maternal obesity, lipotoxicity and cardiovascular diseases in offspring
.
J Mol Cell Cardiol
.
2013
;
55
:
111
6
.
6.
Habbout
A
,
Li
N
,
Rochette
L
,
Vergely
C
.
Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences
.
J Nutr
.
2013
;
143
(
5
):
553
62
.
7.
Ren
Z
,
Luo
S
,
Cui
J
,
Tang
Y
,
Huang
H
,
Ding
G
.
Research progress of MaternalMetabolism on CardiacDevelopment and function in offspring
.
Nutrients
.
2023
;
15
:
3388
.
8.
Aguilar-Sanchez
C
,
Michael
M
,
Pennings
S
.
Cardiac stem cells in the postnatal heart: lessons from development
.
Stem Cells Int
.
2018
;
2018
:
1247857
.
9.
Saravanakumar
M
,
Devaraj
H
.
Distribution and homing pattern of c-kit+ Sca-1+ CXCR4+ resident cardiac stem cells in neonatal, postnatal, and adult mouse heart
.
Cardiovasc Pathol
.
2013
;
22
(
4
):
257
63
.
10.
Serpooshan
V
,
Liu
YH
,
Buikema
JW
,
Galdos
FX
,
Chirikian
O
,
Paige
S
, et al
.
Nkx2.5+ cardiomyoblasts contribute to cardiomyogenesis in the neonatal heart
.
Sci Rep
.
2017
;
7
(
1
):
12590
.
11.
Kankowski
L
,
Ardissino
M
,
McCracken
C
,
Lewandowski
AJ
,
Leeson
P
,
Neubauer
S
, et al
.
The impact of maternal obesity on offspring cardiovascular health: a systematic literature review
.
Front Endocrinol
.
2022
;
13
:
868441
.
12.
Peixoto
AB
,
Bravo-Valenzuela
NJ
,
Martins
WP
,
Tonni
G
,
Moron
AF
,
Mattar
R
, et al
.
Impact of overweight and obesity in the fetal cardiac function parameters in the second and third trimesters of pregnancy
.
Cardiol Young
.
2024
;
34
(
2
):
319
24
.
13.
Dias
I
,
Salviano
Í
,
Mencalha
A
,
de Carvalho
SN
,
Thole
AA
,
Carvalho
L
, et al
.
Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells
.
Stem Cell Rev Rep
.
2018
;
14
(
4
):
535
45
.
14.
Ferreira
LA
,
Ferreira-Junior
MD
,
Amaral
KDJV
,
Cavalcante
KVN
,
Pontes
CNR
,
Ribeiro
LCDS
, et al
.
Maternal postnatal early overfeeding induces sex-related cardiac dysfunction and alters sexually hormones levels in young offspring
.
J Nutr Biochem
.
2022
;
103
:
108969
.
15.
Tanvig
M
.
Offspring body size and metabolic profile: effects of lifestyle intervention in obese pregnant women
.
Dan Med J
.
2014
;
61
(
7
):
B4893
.
16.
Inzani
I
,
Ozanne
SE
.
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring
.
Proc Nutr Soc
.
2022
;
81
(
3
):
227
42
.
17.
Leirós
L
,
Dáu
JBT
,
Pinheiro
D
,
Stumbo Machado
AC
,
Thole
AA
,
Cortez
E
, et al
.
Hematopoietic changes in the offspring induced by maternal overweight: effect on placenta and fetal liver populations
.
Placenta
.
2018
;
64
:
7
16
.
18.
Wang
J
,
Ma
H
,
Tong
C
,
Zhang
H
,
Lawlis
GB
,
Li
Y
, et al
.
Overnutrition and maternalobesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart
.
FASEB J
.
2010
;
24
(
6
):
2066
76
.
19.
Andrade
D
,
Oliveira
G
,
Menezes
L
,
Nascimento
AL
,
Carvalho
S
,
Stumbo
AC
, et al
.
Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice
.
Nutr Metab Cardiovasc Dis
.
2020
;
30
(
1
):
151
61
.
20.
Vieira
AKG
,
Soares
VM
,
Bernardo
AF
,
Neves
FA
,
Mattos
ABM
,
Guedes
RM
, et al
.
Overnourishment during lactation induces metabolic and haemodynamic heart impairment during adulthood
.
Nutr Metab Cardiovasc Dis
.
2015
;
25
(
11
):
1062
9
.
21.
Wang
W
,
Huo
Y
,
Zhang
J
,
Xu
D
,
Bai
F
,
Gui
Y
.
Association between high-fat diet during pregnancy and heart weight of the offspring: a multivariate and mediation analysis
.
Nutrients
.
2022
;
14
(
20
):
4237
.
22.
Groves
AM
,
Price
AN
,
Russell-Webster
T
,
Jhaveri
S
,
Yang
Y
,
Battersby
EE
, et al
.
Impact of maternalobesity on neonatalheart rate and cardiac size
.
Arch Dis Child Fetal Neonatal Ed
.
2022
;
107
(
5
):
481
7
.
23.
MacGrogan
D
,
Münch
J
,
de la Pompa
JL
.
Notch and interacting signalling pathways in cardiac development, disease, and regeneration
.
Nat Rev Cardiol
.
2018
;
15
(
11
):
685
704
.
24.
Maloyan
A
,
Muralimanoharan
S
,
Huffman
S
,
Cox
LA
,
Nathanielsz
PW
,
Myatt
L
, et al
.
Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity
.
Physiol Genomics
.
2013
;
45
(
19
):
889
900
.
25.
Cabral-Pacheco
GA
,
Garza-Veloz
I
,
Castruita-De la Rosa
C
,
Ramirez-Acuña
JM
,
Perez-Romero
BA
,
Guerrero-Rodriguez
JF
, et al
.
The roles of matrix metalloproteinases and their inhibitors in human diseases
.
Int J Mol Sci
.
2020
;
21
(
24
):
9739
.
26.
Vanhoutte
D
,
Heymans
S
.
TIMPs and cardiac remodeling: Embracing the MMP-independent-side of the family
.
J Mol Cell Cardiol
.
2010
;
48
(
3
):
445
53
.
27.
Loche
E
,
Blackmore
HL
,
Carpenter
AA
,
Beeson
JH
,
Pinnock
A
,
Ashmore
TJ
, et al
.
Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet
.
Cardiovasc Res
.
2018
;
114
(
10
):
1372
84
.
28.
Wang
G
,
Wang
B
,
Yang
P
.
Epigenetics in congenital heart disease
.
J Am Heart Assoc
.
2022
;
11
(
7
):
e025163
.
29.
Sandstedt
J
,
Jonsson
M
,
Lindahl
A
,
Jeppsson
A
,
Asp
J
.
C-kit+ CD45- cells found in the adult human heart represent a population of endothelial progenitor cells
.
Basic Res Cardiol
.
2010
;
105
(
4
):
545
56
.
30.
Sultana
N
,
Zhang
L
,
Yan
J
,
Chen
J
,
Cai
W
,
Razzaque
S
, et al
.
Resident c-kit(+) cells in the heart are not cardiac stem cells
.
Nat Commun
.
2015
;
6
:
8701
.
31.
Di Siena
S
,
Gimmelli
R
,
Nori
SL
,
Barbagallo
F
,
Campolo
F
,
Dolci
S
, et al
.
Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury
.
Cell Death Dis
.
2016
;
7
(
7
):
e2317
.
32.
Ahmed
A
,
Liang
M
,
Chi
L
,
Zhou
YQ
,
Sled
JG
,
Wilson
MD
, et al
.
Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility
.
Mol Metab
.
2021
;
43
:
101116
.
33.
Nakano
H
,
Minami
I
,
Braas
D
,
Pappoe
H
,
Wu
X
,
Sagadevan
A
, et al
.
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
.
Elife
.
2017
;
6
:
e29330
.
34.
Jonker
SS
,
Kamna
D
,
LoTurco
D
,
Kailey
J
,
Brown
LD
.
IUGR impairs cardiomyocyte growth and maturation in fetal sheep
.
J Endocrinol
.
2018
;
239
(
2
):
253
65
.
35.
Åmark
H
,
Sirotkina
M
,
Westgren
M
,
Papadogiannakis
N
,
Persson
M
.
Is obesity in pregnancy associated with signs of chronic fetal hypoxia
.
Acta Obstet Gynecol Scand
.
2020
;
99
(
12
):
1649
56
.
36.
Medley
TL
,
Furtado
M
,
Lam
NT
,
Idrizi
R
,
Williams
D
,
Verma
PJ
, et al
.
Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/-catenin signaling
.
PLoS One
.
2013
;
8
:
1
8
.
37.
Meng
X
,
Zhang
P
,
Zhang
L
.
Fetal hypoxia impacts on proliferation and differentiation of sca-1+ cardiac progenitor cells and maturation of cardiomyocytes: a role of MicroRNA-210
.
Genes
.
2020
;
11
(
3
):
328
.
38.
Rhee
D
,
Sanger
JM
,
Sanger
JW
.
The premyofibril: evidence for its role in myofibrillogenesis
.
Cell Motil Cytoskeleton
.
1994
;
28
(
1
):
1
24
.
39.
Franco
D
,
Lamers
WH
,
Moorman
AF
.
Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model
.
Cardiovasc Res
.
1998
;
38
(
1
):
25
53
.
40.
England
J
,
Loughna
S
.
Heavy and light roles: myosin in the morphogenesis of the heart
.
Cell Mol Life Sci
.
2013
;
70
(
7
):
1221
39
.
41.
Jones
WK
,
Grupp
IL
,
Doetschman
T
,
Grupp
G
,
Osinska
H
,
Hewett
TE
, et al
.
Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart
.
J Clin Invest
.
1996
;
98
(
8
):
1906
17
.
42.
Wang
Q
,
Zhu
C
,
Sun
M
,
Maimaiti
R
,
Ford
SP
,
Nathanielsz
PW
, et al
.
Maternal obesity impairs fetal cardiomyocyte contractile function in sheep
.
FASEB J
.
2019
;
33
(
2
):
2587
98
.
You do not currently have access to this content.