Introduction: Fetal microchimerism could be involved in the regulation of breast cancer oncogenesis. CD34+ cells could be of a particular interest as up to 12% of the CD34+ population in maternal blood are of fetal origin. The aim of this research was to analyze the impact of umbilical cord blood (UCB) CD34+ on MCF-7 and MDA-MB-231 breast cancer cell lines, in order to uncover novel biological mechanisms and suggest novel treatment options for breast cancer. Methods: UCB CD34+ cells were obtained from healthy women at full-term delivery. Direct cultures were grown with MCF-7 and MDA-MB-231 cells. Proliferation, migration, invasion, and transcriptomic analysis of breast cancer cell lines were compared between cultures exposed and nonexposed to UCB CD34+ cells. Interactions between UCB CD34+ and breast cancer cells were analyzed under fluorescent microscopy. Functional analyses were generated with QIAGEN’s Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA). Results: Direct contact between UCB CD34+ and breast cancer cell lines induced a reduction in the proliferative capacities of MCF-7 and MDA-MB-231 and diminished the migration abilities of MDA-MB-231 cells. In 3D coculture, UCB CD34+ cells were attracted by tumor spheroids and incorporated into tumor cells. These cell-to-cell interactions were responsible for transcriptome modifications coherent with observed functional modifications. Among the cytokines secreted by UCB CD34+, IFN-γ was identified as a potential upstream regulator responsible for the molecular modifications observed in transcriptomic analysis of MCF-7 breast cancer cells exposed to UCB CD34+ cells, as was IL-17A in MDA-MB-231 cells. Conclusion: Direct cell-to-cell contact induced functional modifications in breast cancer cells. Interactions between UCB CD34+ and breast cancer cells could induce cell fusion and signal transmission via cytokines. Further analysis of direct cell-to-cell interactions should be performed at a molecular level to further understand the potential role of fetal CD34+ cells in breast cancer.

1.
UNICANCER
.
Les chiffres du cancer en France
;
2021
. Available form: http://www.unicancer.fr/le-groupeunicancer/les-chiffres-cles/les-chiffres-du-cancer-en-france
2.
Migliavacca Zucchetti
B
,
Peccatori
FA
,
Codacci-Pisanelli
G
.
Pregnancy and lactation: risk or protective factors for breast cancer
.
Adv Exp Med Biol
.
2020
;
1252
:
195
7
.
3.
Froehlich
K
,
Schmidt
A
,
Heger
JI
,
Al-Kawlani
B
,
Aberl
CA
,
Jeschke
U
, et al
.
Breast cancer, placenta and pregnancy
.
Eur J Cancer
.
2019
;
115
:
68
78
.
4.
Husby
A
,
Wohlfahrt
J
,
Øyen
N
,
Melbye
M
.
Pregnancy duration and breast cancer risk
.
Nat Commun
.
2018
;
9
(
1
):
4255
.
5.
Mathelin
C
,
Youssef
C
,
Brettes
JP
,
Rio
MC
.
[Paradoxical interactions between pregnancy and breast cancer]
.
Gynecol Obstet Fertil
.
2007
;
35
(
5
):
449
56
.
6.
Lambe
M
,
Hsieh
C
,
Tsaih
S
,
Ekbom
A
,
Adami
HO
,
Trichopoulos
D
.
Maternal risk of breast cancer following multiple births: a nationwide study in Sweden
.
Cancer Causes Control
.
1996
;
7
(
5
):
533
8
.
7.
Hsieh
C
,
Wuu
J
,
Trichopoulos
D
,
Adami
HO
,
Ekbom
A
.
Gender of offspring and maternal breast cancer risk
.
Int J Cancer
.
1999
;
81
(
3
):
335
8
.
8.
Gadi
VK
,
Nelson
JL
.
Fetal microchimerism in women with breast cancer
.
Cancer Res
.
2007
;
67
(
19
):
9035
8
.
9.
Gadi
VK
,
Malone
KE
,
Guthrie
KA
,
Porter
PL
,
Nelson
JL
.
Case-control study of fetal microchimerism and breast cancer
.
PLoS One
.
2008
;
3
(
3
):
e1706
.
10.
Gammill
HS
,
Nelson
JL
.
Naturally acquired microchimerism
.
Int J Dev Biol
.
2010
;
54
(
2–3
):
531
43
.
11.
Khosrotehrani
K
,
Bianchi
DW
.
Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse
.
J Cell Sci
.
2005
;
118
(
Pt 8
):
1559
63
.
12.
O’Donoghue
K
,
Chan
J
,
de la Fuente
J
,
Kennea
N
,
Sandison
A
,
Anderson
JR
, et al
.
Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy
.
Lancet
.
2004
;
364
(
9429
):
179
82
.
13.
Mikhail
MA
,
M’Hamdi
H
,
Welsh
J
,
Levicar
N
,
Marley
SB
,
Nicholls
JP
, et al
.
High frequency of fetal cells within a primitive stem cell population in maternal blood
.
Hum Reprod
.
2008
;
23
(
4
):
928
33
.
14.
Bianchi
DW
,
Zickwolf
GK
,
Weil
GJ
,
Sylvester
S
,
DeMaria
MA
.
Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum
.
Proc Natl Acad Sci USA
.
1996
;
93
(
2
):
705
8
.
15.
Khosrotehrani
K
,
Reyes
RR
,
Johnson
KL
,
Freeman
RB
,
Salomon
RN
,
Peter
I
, et al
.
Fetal cells participate over time in the response to specific types of murine maternal hepatic injury
.
Hum Reprod
.
2007
;
22
(
3
):
654
61
.
16.
Nassar
D
,
Khosrotehrani
K
,
Aractingi
S
.
Fetal microchimerism in skin wound healing
.
Chimerism
.
2012
;
3
(
2
):
45
7
.
17.
Nassar
D
,
Droitcourt
C
,
Mathieu-d’Argent
E
,
Kim
MJ
,
Khosrotehrani
K
,
Aractingi
S
.
Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing
.
FASEB J
.
2012
;
26
(
1
):
149
57
.
18.
Nguyen Huu
S
,
Oster
M
,
Uzan
S
,
Chareyre
F
,
Aractingi
S
,
Khosrotehrani
K
.
Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells
.
Proc Natl Acad Sci USA
.
2007
;
104
(
6
):
1871
6
.
19.
Nguyen Huu
S
,
Khosrotehrani
K
,
Oster
M
,
Moguelet
P
,
Espié
MJ
,
Aractingi
S
.
Early phase of maternal skin carcinogenesis recruits long-term engrafted fetal cells
.
Int J Cancer
.
2008
;
123
(
11
):
2512
7
.
20.
Khosrotehrani
K
,
Johnson
KL
,
Cha
DH
,
Salomon
RN
,
Bianchi
DW
.
Transfer of fetal cells with multilineage potential to maternal tissue
.
JAMA
.
2004
;
292
(
1
):
75
80
.
21.
Dubernard
G
,
Aractingi
S
,
Oster
M
,
Rouzier
R
,
Mathieu
MC
,
Uzan
S
, et al
.
Breast cancer stroma frequently recruits fetal derived cells during pregnancy
.
Breast Cancer Res
.
2008
;
10
(
1
):
R14
.
22.
Weiden
PL
,
Flournoy
N
,
Thomas
ED
,
Prentice
R
,
Fefer
A
,
Buckner
CD
, et al
.
Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts
.
N Engl J Med
.
1979
;
300
(
19
):
1068
73
.
23.
Holliday
DL
,
Speirs
V
.
Choosing the right cell line for breast cancer research
.
Breast Cancer Res
.
2011
;
13
(
4
):
215
.
24.
Bubba
F
,
Pouchol
C
,
Ferrand
N
,
Vidal
G
,
Almeida
L
,
Perthame
B
, et al
.
A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells
.
J Theor Biol
.
2019
;
479
:
73
80
.
25.
Comşa
Ş
,
Cîmpean
AM
,
Raica
M
.
The story of MCF-7 breast cancer cell line: 40 years of experience in research
.
Anticancer Res
.
2015
;
35
(
6
):
3147
54
.
26.
Li
Z
,
Liu
Y
,
Tuve
S
,
Xun
Y
,
Fan
X
,
Min
L
, et al
.
Toward a stem cell gene therapy for breast cancer
.
Blood
.
2009
;
113
(
22
):
5423
33
.
27.
Zhao
X
,
Li
J
.
Research on the correlation between ultrasonographic features of breast cancer and expressions of ER, CD34 and p53
.
J BUON
.
2018
;
23
(
2
):
372
7
.
28.
Montemurro
F
,
Ueno
NT
,
Rondón
G
,
Aglietta
M
,
Champlin
RE
.
High-dose chemotherapy with hematopoietic stem-cell transplantation for breast cancer: current status, future trends
.
Clin Breast Cancer
.
2000
;
1
(
3
):
197
210
; discussion 210.
29.
Vredenburgh
JJ
,
Madan
B
,
Coniglio
D
,
Ross
M
,
Broadwater
G
,
Niedzwiecki
D
, et al
.
A randomized phase III comparative trial of immediate consolidation with high-dose chemotherapy and autologous peripheral blood progenitor cell support compared to observation with delayed consolidation in women with metastatic breast cancer and only bone metastases following intensive induction chemotherapy
.
Bone Marrow Transpl
.
2006
;
37
(
11
):
1009
15
.
30.
Cancelas
JA
,
Querol
S
,
Canals
C
,
Picón
M
,
Azqueta
C
,
Solà
C
, et al
.
Peripheral blood CD34+ cell immunomagnetic selection in breast cancer patients: effect on hematopoietic progenitor content and hematologic recovery after high-dose chemotherapy and autotransplantation
.
Transfusion
.
1998
;
38
(
11–12
):
1063
70
.
31.
Mohr
M
,
Hilgenfeld
E
,
Fietz
T
,
Hoppe
B
,
Koenigsmann
M
,
Hoffmann
M
, et al
.
Efficacy and safety of simultaneous immunomagnetic CD34+ cell selection and breast cancer cell purging in peripheral blood progenitor cell samples used for hematopoietic rescue after high-dose therapy
.
Clin Cancer Res
.
1999
;
5
(
5
):
1035
40
.
32.
Nieto
Y
,
Shpall
EJ
,
McNiece
IK
,
Nawaz
S
,
Beaudet
J
,
Rosinski
S
, et al
.
Prognostic analysis of early lymphocyte recovery in patients with advanced breast cancer receiving high-dose chemotherapy with an autologous hematopoietic progenitor cell transplant
.
Clin Cancer Res
.
2004
;
10
(
15
):
5076
86
.
33.
Li
T
,
Zhang
C
,
Ding
Y
,
Zhai
W
,
Liu
K
,
Bu
F
, et al
.
Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway
.
Oncol Rep
.
2015
;
34
(
3
):
1469
77
.
34.
Mirabdollahi
M
,
Haghjooyjavanmard
S
,
Sadeghi-Aliabadi
H
.
An anticancer effect of umbilical cord-derived mesenchymal stem cell secretome on the breast cancer cell line
.
Cell Tissue Bank
.
2019
;
20
(
3
):
423
34
.
35.
Chao
KC
,
Yang
HT
,
Chen
MW
.
Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell–cell contact and internalization
.
J Cell Mol Med
.
2012
;
16
(
8
):
1803
15
.
36.
Fu
X
,
De Angelis
C
,
Schiff
R
.
Interferon signaling in estrogen receptor-positive breast cancer: a revitalized topic
.
Endocrinology
.
2022
;
163
(
1
):
bqab235
.
37.
Solary
E
,
Prud’homme
JF
,
Gauville
C
,
Magdelenat
H
,
Calvo
F
.
Modulation of proliferation, estradiol receptors and estrogen regulated protein PS2/BCEI in human breast cancer cell lines by gamma interferon
.
J Biol Regul Homeost Agents
.
1991
;
5
(
3
):
98
106
.
38.
Heimes
AS
,
Härtner
F
,
Almstedt
K
,
Krajnak
S
,
Lebrecht
A
,
Battista
MJ
, et al
.
Prognostic significance of interferon-γ and its signaling pathway in early breast cancer depends on the molecular subtypes
.
Int J Mol Sci
.
2020
;
21
(
19
):
E7178
.
39.
Welte
T
,
Zhang
XHF
.
Interleukin-17 could promote breast cancer progression at several stages of the disease
.
Mediators Inflamm
.
2015
;
2015
:
804347
.
40.
Tsai
YF
,
Huang
CC
,
Lin
YS
,
Hsu
CY
,
Huang
CP
,
Liu
CY
, et al
.
Interleukin 17A promotes cell migration, enhances anoikis resistance, and creates a microenvironment suitable for triple negative breast cancer tumor metastasis
.
Cancer Immunol Immunother
.
2021
;
70
(
8
):
2339
51
.
41.
Chen
WC
,
Lai
YH
,
Chen
HY
,
Guo
HR
,
Su
IJ
,
Chen
HHW
.
Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor
.
Histopathology
.
2013
;
63
(
2
):
225
33
.
42.
Cochaud
S
,
Giustiniani
J
,
Thomas
C
,
Laprevotte
E
,
Garbar
C
,
Savoye
AM
, et al
.
IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2
.
Sci Rep
.
2013
;
3
:
3456
.
43.
Koslawsky
D
,
Zaretsky
M
,
Alcalay
R
,
Mazor
O
,
Aharoni
A
,
Papo
N
.
A bi-specific inhibitor targeting IL-17A and MMP-9 reduces invasion and motility in MDA-MB-231 cells
.
Oncotarget
.
2018
;
9
(
47
):
28500
13
.
You do not currently have access to this content.