Abstract
Introduction: To date, there have been no studies conducted on the development of interosseous muscles (IO) in the human hand. This study aimed to investigate the development of these muscles in order to clarify their terminal insertions and their relationship with the metacarpophalangeal joints. Methods: Serial sections of 25 human specimens (9 embryos and 16 fetuses) between the 7th and 14th weeks of development, sourced from the Collection of the Department of Anatomy and Embryology at UCM Faculty of Medicine, were analyzed bilaterally using a conventional optical microscope. Results: Our findings revealed that, during the 7th week of development, the metacarpophalangeal interzone mesenchyme extended into the extensor apparatus of the fingers. Furthermore, we observed that the joint capsule and the tendon of the IO derive from the articular interzone mesenchyme. By the end of the 7th week, corresponding to Carnegie stage 21, the myotendinous junction appeared, initiating cavitation of the metacarpophalangeal joint. During the fetal period, the terminal insertions of the IO were identified: both the dorsal interosseous (DI) and palmar interosseous (PI) muscles insert into the metacarpophalangeal joint capsule and establish a connection with the volar plate located at the base of the proximal phalanx and the extensor apparatus. Some muscle fibers also attach to the joint capsule at the level of the proximal synovial cul-de-sac. The functional implications of these findings are discussed within this work. Conclusion: This study provides the first detailed description of the development of the interosseous muscles in the human hand.
Plain Language Summary
Currently, the exact development of the interosseous muscles of the human hand remains unknown. In this study, we examine preparations from human embryos and fetuses to determine the key events that take place during the formation of interosseous muscles. Due to existing controversy regarding the precise location of interosseous muscle insertions at the end of development, this study aimed to define and clarify this aspect, as well as its relationship with the metacarpophalangeal joints. Understanding this relationship is crucial for comprehending proper muscle function.